From Coarse Models to Coastal Detail: A Deep Learning Approach to AI based Statistical Downscaling in the Adriatic Sea
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Abstract
Global and Regional Climate Models represent the state of art for assessing climate change impacts, but their coarse spatial resolution limits their utility at local scales, especially in marginal basins and shelf seas [1–3]. Statistical downscaling provides a computationally efficient pathway to overcome this limitation by refining large-scale fields to better capture localized processes [4–7]. 
We introduce a unified framework combining two complementary ML-based strategies: Super-Resolution (SR), which enhances the spatial detail of coarse fields, and Perfect Prognosis (PP), which learns statistical relationships between large-scale predictors and local-scale predictands [8–9]. The approach is designed to combine different subsets oceanic fields as inputs and targeting multiple ocean variables as outputs. 
Our case study focuses on the Adriatic Sea as a testbed. We use the CMEMS MEDSEA Reanalysis [10] on a 1/16° (~4 km) grid since 1990 to 2023, as predictor. A high-resolution Dynamical Downscaling nested within CMEMS MEDSEA Reanalysis [10–11] (AdriaClimPlus Evaluation Run) is chosen as the high-resolution target dataset (~2 km). 
The workflow adopts training in 1990–2012, validation in 2013–2014 and testing from 2015 to 31 May 2023. The framework is designed to integrate a wide spectrum of deep learning strategies, spanning convolutional-based [12–16] and attention-based architectures [17–19] as well as generative approaches (Diffusion Models) [20–23]. 
Finally, the ENEA-MEDCORDEX regional Earth System Model (ESM) [24,25], at 1/12° (~8 km) resolution for the ocean component, has been used to feed the AI-based statistical downscaling infrastructure to produce fine resolution limited area projections. The historical period spans 1980–2014, and two CMIP6 scenarios (from 2015 to 2100) are considered: SSP2-4.5 and SSP5-8.5 [26,27]. 
By jointly advancing SR and PP within a single framework and leveraging comparisons with existing dynamical downscaling results over the same limited-area domain, this work aims to provide reliable high-resolution ocean projections under different scenarios for coastal risk analysis and adaptation planning in the Adriatic basin.
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