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Motivation

In Global Ocean Data Assimilation, we are interested in heat and flow fields
in climatological time scale, rather than focusing on phenomena that occur
over a short period of time.

Because we have plenty of profile observations, we would better compare
observational and model profiles directly, rather than comparing Temperature
and Salinity at each point in a profile.

If we divide the model domain into spatio-temporal meshes of about 1 degree
and 1 month, there are often multiple observed profiles in a mesh, because
Argo has about 4000 floats distributed heterogeneously, which are drifting
slowly around one location and making observations a few times a month.

Taking into account these situations, we propose a problem setting of data
assimilation based on the comparison of signature averages of observation
and model profiles in each mesh.

A version of MRI.com is employed as ocean general circulation model
(OGCM).

We will solve it by 4D-Var.
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Signature transform (1/2)

A vertical profile can be regarded as a sequence of 3-d vectors

{Xt ∈ R3| t = t0, t1, · · · , tL; t0 = 0, tL = 1},

where Xt is composed of pressure X
(1)
t = Pt , salinity X

(2)
t = St , and temperature

X
(3)
t = Tt .

We interpolate Xt in interval [tℓ, tℓ+1] ⊂ [0, 1] as

Xt =
tℓ+1 − t

tℓ+1 − tℓ
Xtℓ +

t − tℓ
tℓ+1 − tℓ

Xtℓ+1
.

We then define the first iterated integrals as

S(i1)(X )0,1 =

∫ 1

u=0

dX (i1)
u = X

(i1)
1 − X

(i1)
0 , i1 = 1, 2, 3,

which is just the vector from the starting point to the endpoint.
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Signature transform (2/2)

The second iterated integrals are defined as

S(i1i2)(X )0,1 =

∫ 1

u=0

S(i1)(X )0,udX
(i2)
u =

∫ 1

u=0

(X (i1)
u − X

(i1)
0 )dX (i2)

u .

Similarly, the n-th iterated integrals are defined recursively as

S(i1i2···in)(X )0,1 =

∫ 1

u=0

S(i1,i2,··· ,in−1)(X )0,udX
(in)
u .

Using the basis {e1, e2, e3} of R3, we define a formal power series ∗

S(X ) = 1 +
∑

i1=1,2,3

S(i1)(X )ei1 +
∑

i1,i2=1,2,3

S(i1i2)(X )ei1ei2 + · · · ,

which is called the signature of path X (Chevyrev and Kormilitzin, 2016;
Lyons et al., 2007).

In practical use, we truncate the signature up to the n-th iterated integrals:

Sn(X ) = 1 +
∑

i1=1,2,3

S(i1)(X )ei1 + · · ·+
∑

i1,··· ,in=1,2,3

S(i1···in)(X )ei1 · · · ein .

∗The subscript 0,1 in S(i1)(X )0,1 is omitted.
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Lévy Area

Among others, an important feature of a path is represented by the Lévy area:

S(i1i2)(X )− S(i2i1)(X )

2
=

∫
0≤u1<u2≤1

(
dX (i1)

u1 dX (i2)
u2 − dX (i2)

u1 dX (i1)
u2

)
/2,

where 1 ≤ i1 < i2 ≤ 3. As shown in Fig. 1, Lévy area is the area enclosed by the
path and the chord.
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Figure 1: Lévy area for P and T ,
∫
0≤u1<u2≤1

(dPu1dTu2 − dTu1dPu2) /2, which is
analogous to heat content.
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How signature grasps the shape (order-1)

Figure 2: How order-1 signature S1(X ) grasps the shape of an oceanic profile. T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-2)

Figure 3: How order-2 signature S2(X ) grasps the shape of an oceanic profile. T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-3)

Figure 4: How order-3 signature S3(X ) grasps the shape of an oceanic profile. T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-4)

Figure 5: How order-4 signature S4(X ) grasps the shape of an oceanic profile. T:
Water Temperature, S: Salinity, P: Water Pressure.
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Data Assimilation Problem

Suppose we have an inversion problem

y = G (u) + η, (1)

where G is an ocean general circulation model (OGCM), u is the control
variables (initial and boundary conditions), G (u) is the output variables (a
set of profiles), y is the observation (a set of Argo profiles), and η is the
observational error.
We set the simulation domain to global ocean from Jan 2012 to Dec 2012. It
is divided into spatial meshes of resolution 1× 0.5 degree and temporal
meshes of monthly resolution. For example, a mesh is defined in the range of
10N to 10.5N, 140E to 141E, February 2012.
Let πm be the restriction operator to the m-th spatio-temporal mesh, we
define the problem for mesh m as

ym = Gm(u) + ηm, (2)

where Gm := πm ◦ G is the OGCM that generates profiles in mesh m, u is the
control variables (initial condition), Gm(u) := πm ◦ G (u) is the set of profiles
in mesh m, ym is the set of Argo profiles in mesh m, and ηm is the
observational error for mesh m (assumed to be independent).
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Measures and Empirical Measures

Instead of assuming the probability distribution (measure) of ηm to be
Gaussian, we compare the model and observational measures for mesh m:

profile X ∈ Gm(u) =⇒ X ∼ Pm,u, (3)

profile Y ∈ ym =⇒ Y ∼ Qm. (4)

These measures, Pm,u and Qm, are approximated by empirical measures:

P̃m,u =
1

|Gm(u)|
∑

X∈Gm(u)

δX , (5)

Q̃m =
1

|ym|
∑
Y∈ym

δY , (6)

where |ym| denotes the number of observational profiles in mesh m, and δY is
the delta function.
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Maximum Mean Discrepancy

The distance between two measures can be evaluated by kernel averages,
which constitute Maximum Mean Discrepancy (MMD). That has recently
been used in estimation problems (Chérief-Abdellatif and Alquier, 2020).

When paths X ∼ P are embedded in the tensor space T of the signatures by
S : X 7→ S(X ) ∈ T , we can define the kernel mean embedding of measure P
as µk(P) := EX∼P [S(X )]. Then, the MMD between the two measures is
defined as

MMD(P̃m,u, Q̃m) = ‖µk(P̃m,u)− µk(Q̃m)‖T . (7)

In our case, Eq. (7) is thus written as

MMD2(P̃m,u, Q̃m) =

∥∥∥∥∥∥ 1

|Gm(u)|
∑

X∈Gm(u)

S(X )− 1

|ym|
∑
Y∈ym

S(Y )

∥∥∥∥∥∥
2

T

. (8)

This is nothing but the comparison of signature averages for the sets of
model profiles in a mesh and those for observation profiles.

It can be seen as a path-to-path version of moment matching,
(x − y)2, (x2 − y2)2, · · · , in the case of point-to-point comparison.
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Homogeneous cost function

How we define the norm, ‖ ‖T , in Eq. (8)?

The signature does not live in a linear space, but in tensor space T .

If we dilate path X to λX , the k-th iterated integral scales to

S(i1···ik )(λX ) = λkS(i1···ik )(X ), k = 1, · · · , n. (9)

To be consist with this scaling property, we define the MMD(8) as

MMD2 =
∑
m

n∑
k=1

 ∑
i1,··· ,ik

 1

|Gm(u)|
∑

X∈Gm(u)

S(i1···ik )(X )−
1

|ym|
∑
Y∈ym

S(i1···ik )(Y )

21/k

.

(10)

We use this as observational cost function: Jobs(u) =
1
2MMD2. Thereby, if

we dilate path X to λX and Y to λY , then Jobs(u) scales to λ2Jobs(u).

We apply n = 4, so that the 1-st to 4-th iterated integrals are taken into
account.

By minimizing the cost function, we can make closer the probability
distributions of the model and the observation, each of these distribution
defines how to generate the profiles in a mesh.
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4D-Var

Our control vector u comprises of the initial condition and the air-sea fluxes.

We define the background cost as

Jbg(u) =
1

2
(u − ub)

TB−1(u − ub), (11)

where ub is the firstguess vector and B is the background error covariance.

By introducing a spatial smoothing operator S , we change variable u into v as

u = B
1
2 Sv + ub. (12)

We finally define the cost function with respect to v as

J (v) := Jbg(B
1
2 Sv + ub) + λ2Jobs(B

1
2 Sv + ub)

=
1

2
vTSTSv + λ2Jobs(B

1
2 Sv + ub). (13)

where λ is a tunable dilation factor.

Our 4D-Var minimizes the cost function J (v) by using the BFGS iterations.
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Experimental Result

The south of the Greenland was excluded from observation because of the
poor representation there by the model.

We used dilation factor λ = 103, and 35 iterations were performed.

The variation of the total and observational costs went as follows.
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Figure 6: The variation of the cost function. Horizontal axis is the number of
iterations and vertical axis is the cost value.
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Comparison of the errors for the Iterated Integrals
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Figure 7: Comparison of the error for the iterated integrals,

Eglobal

[(
S(i1···in)(X )− S(i1···in)(Y )

)2
] 1

2

, in linear scale (left) and log-log scale (right),

where X is from model and Y is from observation. Vertical axis is firstguess, and
horizontal axis is assimilation. Dots in lower-right side indicate improvement. The 1-st to
4-th iterated integrals are shown in red, green, magenta, and blue, respectively.
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Global Distribution of Lévy area for P and T

Figure 8: The averages of Lévy area
∫
(dPdT − dTdP)/2 for observation (left),

assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Global Distribution of Lévy area for P and S

Figure 9: The averages of Lévy area
∫
(dPdS − dSdP)/2 for observation (left),

assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Global Distribution of Lévy area for S and T

Figure 10: The averages of Lévy area
∫
(dSdT − dTdS)/2 for observation (left),

assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Sea Surface Height

Considerable changes were seen in sea surface height.

obs. (not assimilated) assimilation firstguess

Figure 11: Annual mean sea surface height for assimilation (center) and firstguess
(right), and a climatology from AVISO (left; Dietze et al. (2020)).
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Conclusion

We designed an ocean data assimilation problem in which the
signature-based MMD† is employed as the distance between observation and
model measures at each mesh.

Preliminary experiment showed that the problem can be successfully solved
by 4D-Var.

It will be important to examine whether or not this approach can create a
good estimation of ocean circulation field.

There remains to be solved how to determine the dilation factor.

This approach is novel because it is based on the comparison of profile to
profile, rather than of point to point.

†MMD: maximum mean discrepancy
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