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@ In Global Ocean Data Assimilation, we are interested in heat and flow fields
in climatological time scale, rather than focusing on phenomena that occur
over a short period of time.

@ Because we have plenty of profile observations, we would better compare
observational and model profiles directly, rather than comparing Temperature
and Salinity at each point in a profile.

o If we divide the model domain into spatio-temporal meshes of about 1 degree
and 1 month, there are often multiple observed profiles in a mesh, because
Argo has about 4000 floats distributed heterogeneously, which are drifting
slowly around one location and making observations a few times a month.

@ Taking into account these situations, we propose a problem setting of data
assimilation based on the comparison of signature averages of observation
and model profiles in each mesh.

@ A version of MRI.com is employed as ocean general circulation model
(OGCM).
@ We will solve it by 4D-Var.
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Signature transform (1/2)

A vertical profile can be regarded as a sequence of 3-d vectors
(X eR®| t=to, t1,--- , t;to =0, = 1},

) — P;, salinity Xt(z) = S;, and temperature

where X; is composed of pressure Xt(1
x® =T,

o We interpolate X; in interval [ty, t;41] C [0,1] as

X, — toy1 — ¢ t—1t
t — te
toy1 — te tor1 — by

teyr:

@ We then define the first iterated integrals as
. 1 . . .
SO(Xox = [ ax? =XV XV, =123,
u=0

which is just the vector from the starting point to the endpoint.
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Signature transform (2/2)

@ The second iterated integrals are defined as
SR (X)o1 = / S (X)o,,dX(?) = /1 (X — x{Myax (=),
u=0
@ Similarly, the n-th iterated integrals are defined recursively as
‘5*(,'1,'2.4.:'")(X)071 = /108(:‘1,;2,.4.,in_l)(X)OdelSin)_

@ Using the basis {e;, &, e3} of R3, we define a formal power series *
SX)=1+ > SD(X)e, + > SO (X)eye, +--,
i1=1,2,3 i1,i=1,2,3

which is called the signature of path X (Chevyrev and Kormilitzin, 2016;
Lyons et al., 2007).
@ In practical use, we truncate the signature up to the n-th iterated integrals:

=14 Z s() X)e, + -+ Z S(il""'n)()()e’.1 T

h=1,2,3 i, ,in=1,2,3

*The subscript ¢,1 in S(il)(X)0,1 is omitted.
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Among others, an important feature of a path is represented by the Lévy area:
S(hiz)(x) _ S(izil)(X) y ; ; ;
. - /0 o (dXﬁll)dXL(,;) - dXL(,f)dXL(,;)) /2,
Sui<>

where 1 < i1 < ip < 3. As shown in Fig. 1, Lévy area is the area enclosed by the
path and the chord.
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Figure 1: Lévy area for P and T, f0<u1<u2<1 (dPu,, dTy, — dTy dPy,) /2, which is
analogous to heat content. a B
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How signature grasps the shape (order-1)
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Figure 2: How order-1 signature S1(X) grasps the shape of an oceanic profile. ~ T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-2)
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Figure 3: How order-2 signature S>(X) grasps the shape of an oceanic profile. ~ T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-3)
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Figure 4: How order-3 signature S3(X) grasps the shape of an oceanic profile. ~ T:
Water Temperature, S: Salinity, P: Water Pressure.
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How signature grasps the shape (order-4)
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Figure 5: How order-4 signature S4(X) grasps the shape of an oceanic profile. ~ T:
Water Temperature, S: Salinity, P: Water Pressure.
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Data Assimilation Problem

@ Suppose we have an inversion problem

y = G(u)+mn, (1)

where G is an ocean general circulation model (OGCM), u is the control
variables (initial and boundary conditions), G(u) is the output variables (a
set of profiles), y is the observation (a set of Argo profiles), and 7 is the
observational error.

@ We set the simulation domain to global ocean from Jan 2012 to Dec 2012. It
is divided into spatial meshes of resolution 1 x 0.5 degree and temporal
meshes of monthly resolution. For example, a mesh is defined in the range of
10N to 10.5N, 140E to 141E, February 2012.

@ Let 7, be the restriction operator to the m-th spatio-temporal mesh, we
define the problem for mesh m as

Ym = Gm(u)+77m7 (2)

where G, := 7, 0 G is the OGCM that generates profiles in mesh m, u is the
control variables (initial condition), Gy (u) := mm o G(u) is the set of profiles
in mesh m, yp, is the set of Argo profiles in mesh m, and 7,, is the
observational error for mesh m (assumed to be independent).

N. Sugiura Signature-based 4DVar 15 Nov 2022 10/23



Measures and Empirical Measures

@ Instead of assuming the probability distribution (measure) of 7, to be
Gaussian, we compare the model and observational measures for mesh m:

profile X € Gp(u) = X ~ Pp, 4, (3)
profile Y€y, = Y ~ Qn. (4)

@ These measures, Py, , and Qp,, are approximated by empirical measures:

Pru = Z Ox, (5)

|G ( XEG (u)
m | | Z Y5 (6)
Ym Yoy

where |y,,| denotes the number of observational profiles in mesh m, and Jy is
the delta function.
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Maximum Mean Discrepancy

@ The distance between two measures can be evaluated by kernel averages,
which constitute Maximum Mean Discrepancy (MMD). That has recently
been used in estimation problems (Chérief-Abdellatif and Alquier, 2020).

@ When paths X ~ P are embedded in the tensor space T of the signatures by
S : X — S(X) € T, we can define the kernel mean embedding of measure P
as pk(P) := Exp[S(X)]. Then, the MMD between the two measures is

defined as
MMD( m,u; Qm) H:“k('E)m,U) - Nk(@m)HT' (7)
@ In our case, Eq.(7) is thus written as
2
MMD? (P, Qm) = Z T Z S| . ()
Gm( cen Ym Yeym .

@ This is nothing but the comparison of signature averages for the sets of
model profiles in a mesh and those for observation profiles.

@ It can be seen as a path-to-path version of moment matching,
(x —y)2,(x® — y?)?,---, in the case of point-to-point comparison.
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Homogeneous cost function

How we define the norm, || ||, in Eq.(8)?
@ The signature does not live in a linear space, but in tensor space 7.
o If we dilate path X to AX, the k-th iterated integral scales to

S (AX) = NS (X),  k=1,--,n. (9)
@ To be consist with this scaling property, we define the MMD (8) as
2+ 1/k
MMDQ:ZZ{Z ( Z 3'1 ) (X) — > st Y))}
m k=1 | iy, i XeG l ’"| Y E€Ym
(10)

@ We use this as observational cost function: Jyps(u) = %MMD% Thereby, if
we dilate path X to AX and Y to \Y, then Jous(u) scales to A2 Jps(u).

o We apply n =4, so that the 1-st to 4-th iterated integrals are taken into
account.

@ By minimizing the cost function, we can make closer the probability
distributions of the model and the observation, each of these distribution
defines how to generate the profiles in a mesh.
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@ Our control vector u comprises of the initial condition and the air-sea fluxes.

@ We define the background cost as

(1) = 50— ) B ), (11)

where uy, is the firstguess vector and B is the background error covariance.
@ By introducing a spatial smoothing operator S, we change variable v into v as

u=B2Sv+ up. (12)
@ We finally define the cost function with respect to v as
J(v) = Jbg(B%SV + up) + )\2Jobs(B%5v + up)

1
= SVTSTSV + N Uops(BESV + uy). (13)

where A is a tunable dilation factor.
@ Our 4D-Var minimizes the cost function J(v) by using the BFGS iterations.
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Experimental Result

@ The south of the Greenland was excluded from observation because of the
poor representation there by the model.

@ We used dilation factor A = 103, and 35 iterations were performed.

@ The variation of the total and observational costs went as follows.
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Figure 6: The variation of the cost function. Horizontal

axis is the number of
iterations and vertical axis is the cost value.
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Comparison of the errors for

assimilation
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Figure 7: Comparison of the error for the iterated integrals,
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where X is from model and Y is from observation. Vertical axis is firstguess, and
horizontal axis is assimilation. Dots in lower-right side indicate improvement. The 1-st to
4-th iterated integrals are shown in red, green, magenta, and blue, respectively.
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Global Distribution of Lévy area for P and T
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Figure 8: The averages of Lévy area [(dPdT — dTdP)/2 for observation (left),
assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Global Distribution of Lévy area for P and S
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Figure 9: The averages of Lévy area [(dPdS — dSdP)/2 for observation (left),
assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Global Distribution of Lévy area for S and T
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Figure 10: The averages of Lévy area [(dSdT — dTdS)/2 for observation (left),

assimilation (center) and firstguess (right) in June (top) and December (bottom) of
2012.
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Sea Surface Height

Considerable changes were seen in sea surface height.
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Figure 11: Annual mean sea surface height for assimilation (center) and firstguess
(right), and a climatology from AVISO (left; Dietze et al. (2020)).
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Conclusion

@ We designed an ocean data assimilation problem in which the
signature-based MMD is employed as the distance between observation and
model measures at each mesh.

@ Preliminary experiment showed that the problem can be successfully solved
by 4D-Var.

@ It will be important to examine whether or not this approach can create a
good estimation of ocean circulation field.

@ There remains to be solved how to determine the dilation factor.

@ This approach is novel because it is based on the comparison of profile to
profile, rather than of point to point.

TMMD: maximum mean discrepancy
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