Joint Workshop of the OS-Eval TT and CP-TT and SynObs Kick-Off, SEP 15-18 November 2022, Hybrid workshop, Tsukuba, Japan

Next Generation Global Ocean Data Assimilation System (NG-GODAS): reanalysis and OSSE applications

Jieshun Zhu

NOAA/NCEP/CPC

Contributors: Arun Kumar¹, Shastri Paturi², Guillaume Vernieres², Travis Sluka³, Wanqiu Wang¹, Jong Kim², Stylianos Flampouris², and the EMC/Marine-DA team², Meghan Cronin⁴, Avichal Mehra², Dongxiao Zhang⁴, Samantha Wills⁴ and Jiande Wang², ...

1. NOAA/NCEP/CPC;2. NOAA/NCEP/EMC;3. UCAR/JCSDA;4. NOAA/OAR/PMEL.

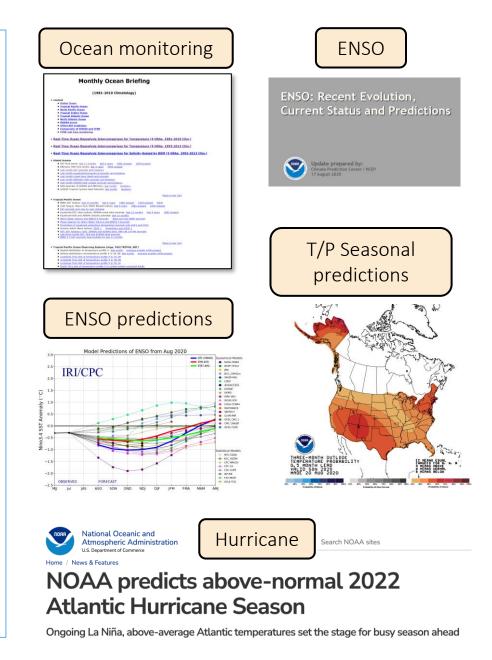
Support from NOAA GOMO and CVP/CPO is acknowledged for the work

Outline

➢Background

➤A pilot 40-year reanalysis

SSEs for Tropical Pacific Observing System


≻Summary

Current NOAA operational ODA systems

- GODAS and CFSR: 2 different, but related systems;
- □ Supports various climate services
- Monitoring: GODAS is used for ocean/ENSO and MJO monitoring

• Prediction:

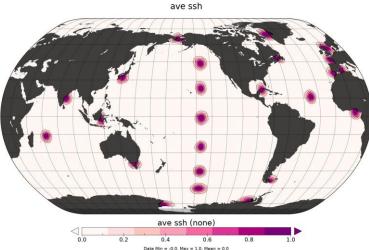
- Foundational for supporting climate predictions (e.g., ENSO, Hurricane outlook, T/P seasonal predictions, drought outlook)
- CFSR is used for initializing the climate prediction system (i.e., CFSv2)

3

The NCEP is the first center that used ocean data to initialize a coupled global climate model-based operational system (Ji, Kumar and Leetmaa 1994).

Current NOAA operational ODA systems

Limitations of GODAS/CFSR (motivation for NG-GODAS):


- ✓ No major upgrade since 2003
- ✓ Old model system: MOM3/4
- Univariate background error covariance
- ✓ Only assimilates in situ temperature
- ✓ Lack of realistic salinity variability
- ✓ limited observation types: no altimetry, no sea-ice for GODAS
- ✓ low resolution: 1degree (GODAS)/0.5 degree (CFSR)
- ✓

A JEDI-based Ocean Data Assimilation System: next generation Global Ocean Data Assimilation System (NG-GODAS)

- Model: DATM-MOM6-CICE6 (1/4 and 1-degree)
- DA algorithm: JEDI-SOCA 3D-Var

B-matrix in SOCA is given by $B = KDC_VC_H C_V^T DK^T$

- *K*: balance operators (e.g., T-S relationship);
- D: standard deviation of background error for T/S;
- C_V: a vertical correlation operator;
- C_H : a horizontal correlation operator (an external package BUMP with length scale scaled by the Rossby radius of deformation).

BUMP-based Correlation modelling

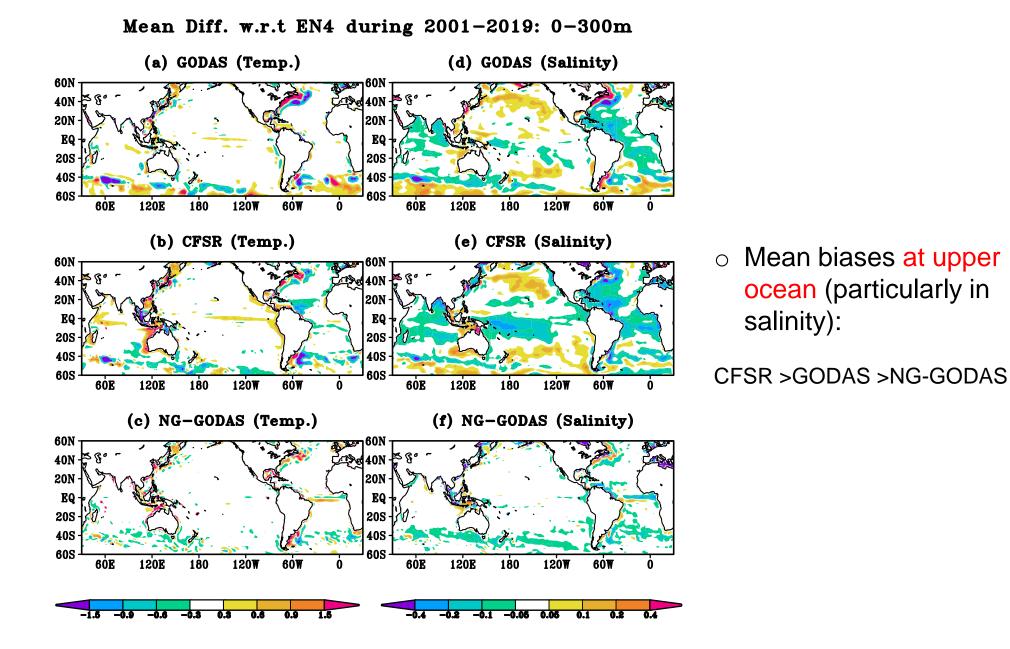
Correlation similar to diffusion operator, but perfectly normalized correlation operator

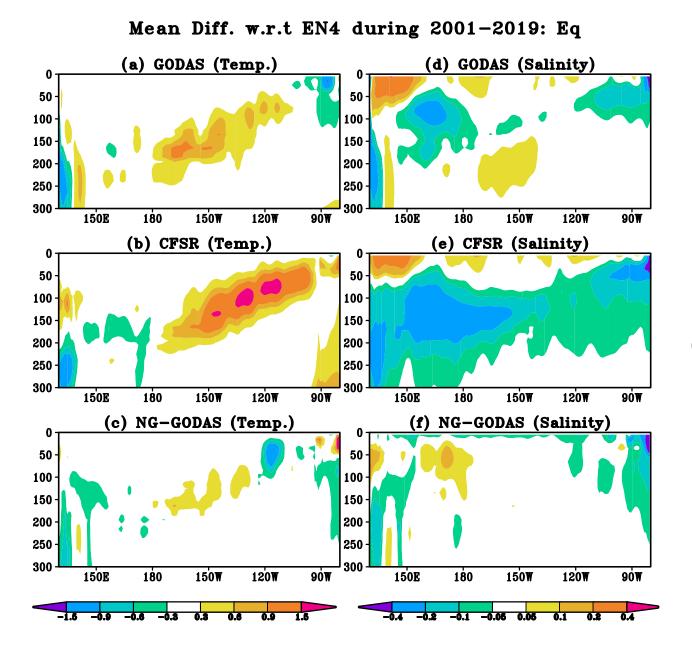
BUMP (Benjamin Menetrier) Correlation on the ¼ degree MOM6 tripolar grid

Outline

➢Background

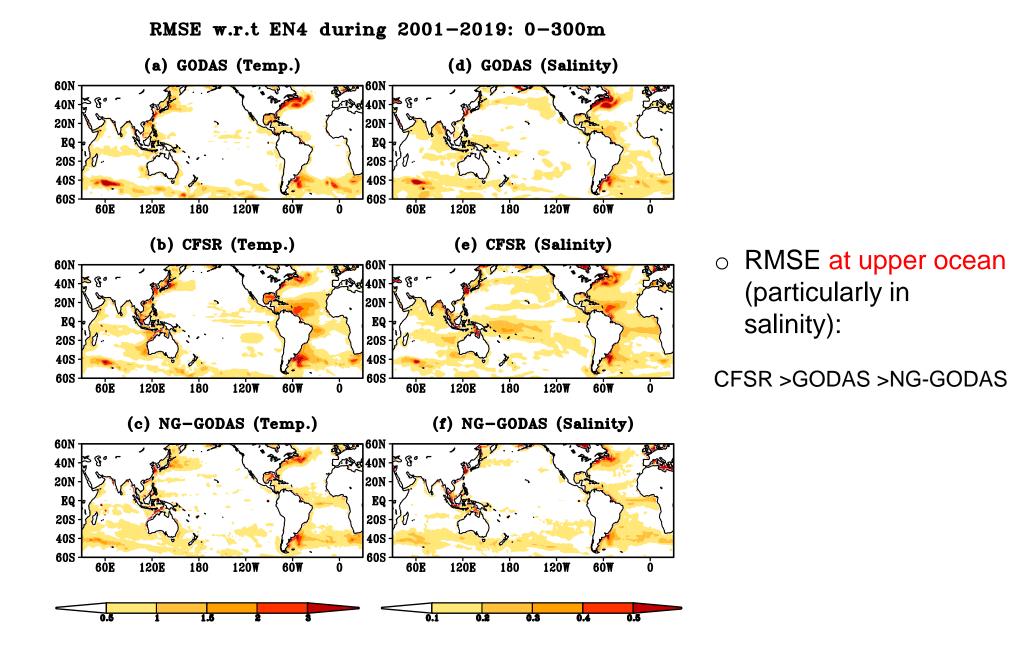
➤A pilot 40-year reanalysis

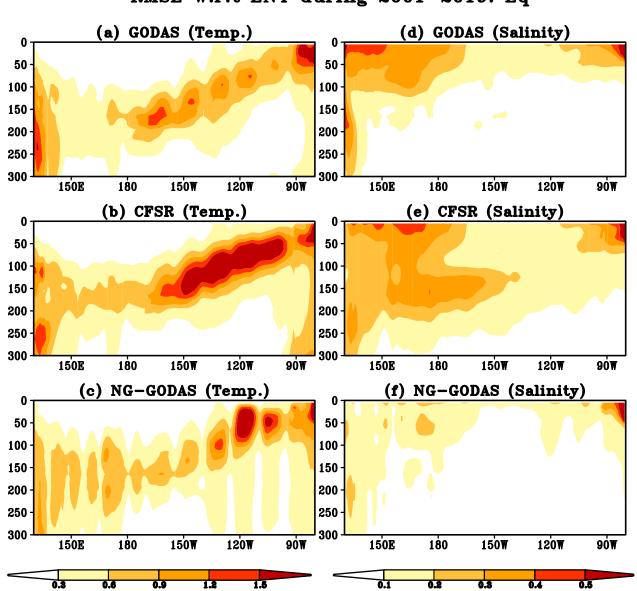

SSEs for Tropical Pacific Observing System


≻Summary

A pilot reanalysis run

- A joint effort of EMC/CPC/JCSDA
- Model: DATM-MOM6-CICE6 (1-degree)
- DA algorithm: JEDI-SOCA 3D-Var
- Atmospheric forcing: CFSR (1979/01-2000/12)+GEFS (2001/01-2019/08);
- Ocean/sea ice obs.:


Obs type	Date
ADT	1993-2020 (NESDIS)
Satellite SST (AVHRR)	1981-200208 (ESACCI L3U), 200208-201811 (NESDIS L3U)
Insitu (T&S)	1979-2020 (WOD)
SSS	SMOS ESA L2 (2010-2020), SMAP RSS/JPL L2 (2015-2020)
Sea ice Conc	NSIDC L3 SSMR, SSMI (1979-200305), EMC L2 (200306-2020 SSMI, SSMIS)



 Mean biases along the equatorial Pacific:

CFSR >GODAS >NG-GODAS

RMSE w.r.t EN4 during 2001-2019: Eq

RMSE along the equatorial Pacific (particularly in salinity):

CFSR >GODAS >NG-GODAS

Outline

➢Background

➤A pilot 40-year reanalysis

SSEs for Tropical Pacific Observing System

≻Summary

Oceanic OSSEs in support of the TPOS 2020 Project

• TPOS 2020 Project:

- Recommended by an international TPOS workshop in Jan. 2014, La Jolla, CA.
- To propose a redesign of TPOS that will be more effective, modern and robust.
- **OSSE:** Current Configuration of *in situ* TPOS observations (Zhu et al. 2021)
 - TAO/TRITON
 - Argo

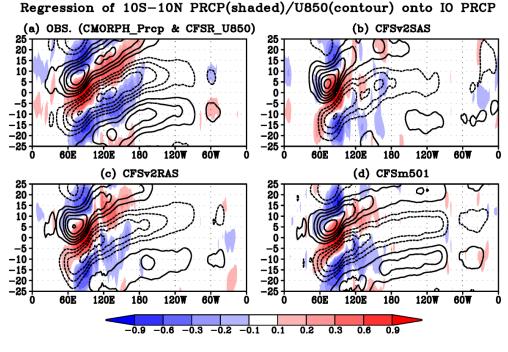
15 AUGUST 2021

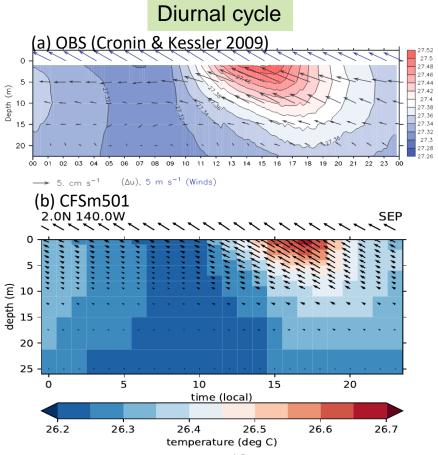
ZHU ET AL.

6797

Roles of TAO/TRITON and Argo in Tropical Pacific Observing Systems: An OSSE Study for Multiple Time Scale Variability®

Jieshun Zhu,^{a,b} Guillaume Vernieres,^c Travis Sluka,^c Stylianos Flampouris,^d Arun Kumar,^a Avichal Mehra,^e Meghan F. Cronin,^f Dongxiao Zhang,^g Samantha Wills,^g Jiande Wang,^d and Wanqiu Wang^a

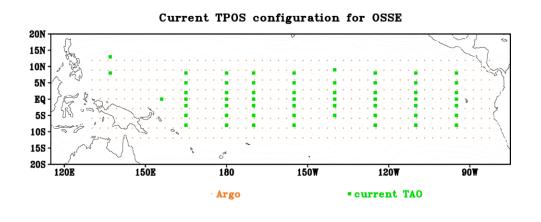

^a Climate Prediction Center, NOAA/NWS/NCEP, College Park, Maryland
^b Earth System Science Interdisciplinary Center, University of Maryland, College Park, Maryland
^c Joint Center for Satellite Data Assimilation, NOAA, College Park, Maryland
^d I. M. Systems Group at NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland
^c Environmental Modeling Center, NOAA/NWS/NCEP, College Park, Maryland
^f Pacific Marine Environmental Laboratory, NOAA, Seattle, Washington
^g Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington, Seattle, Washington


Nature Run: (CFSm501)

- > Two major modifications in operational CFSv2:
 - 1) The **SAS** atmospheric convection scheme=>**RAS**
 - 2) Near the ocean surface, 10-meter vertical resolution=>1-meter
- ATM: the 2007 version of the NCEP GFS; T126 (105-km grid spacing) and 64 vertical levels;
- ➢ OCN: MOM5; 0.5x0.5 (0.25 between 10S and 10N) and 50 levels.

Simulations of MJO and diurnal cycle

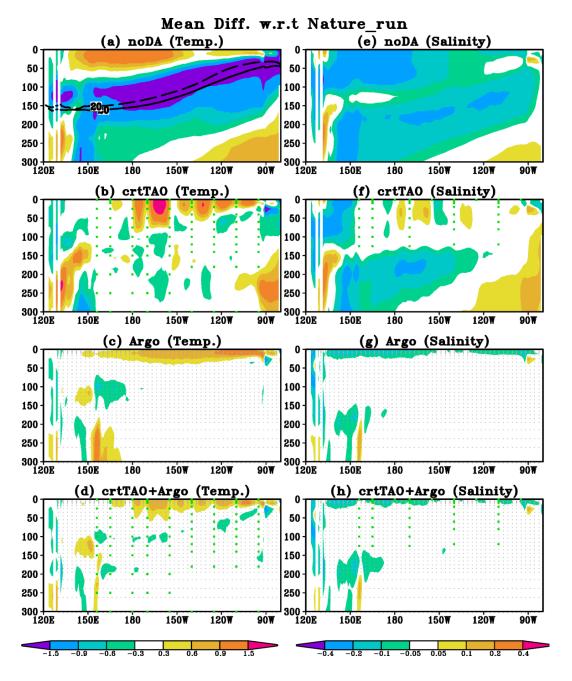
MJO


(Courtesy: Jack ReevesEyre)

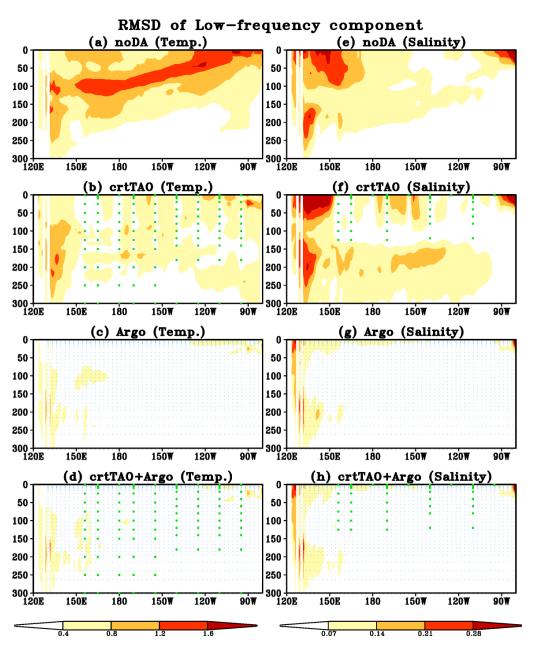
(Zhu et al. 2020)

OSSE studies for the Tropical Pacific Observing System

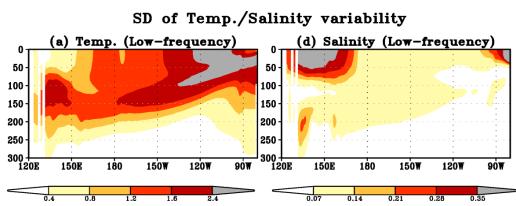
Experimental setup


- **DA system: NG-GODAS** (1° MOM6 + JEDI-based 3DVar)
- Atmospheric forcing: daily from Nature Run
- Synthetic Obs. sampling: TAO/Argo with current configurations; from Nature Run
 - TAO is sampled every 24 hours (vs. 10min in reality)
 - Argo is sampled every 3x3 box every 10 days within TP

Experiments	Assimilated data
noDA	none
crtTAO	T profiles (a few S) every day with current TAO configurations
Argo	T/S profiles every 3x3 box and every 10 days
crtTAO+Argo	Both TAO and Argo profiles


(Zhu et al. 2021)

Comparison of mean biases ($\overline{\mathbf{V}}$)



- Large T/S biases in noDA (forced run);
- **Temp.**: Over most regions, both TAO and Argo correct the subsurface temperature mean biases efficiently
- Salinity: Argo corrects most subsurface salinity mean biases, TAO presents some corrections over upper ocean close to TAO sites with salinity obs.

Comparison of Low-frequency component (V^{LF})

$$V^{\text{LF}} = \frac{1}{91} \sum_{k=-45 day}^{45 day} V'$$

- **noDA** (forced run) captures most LF variabilities;
- **Temp.**: Both TAO and Argo improve the estimate of its LF component
- Salinity: Argo presents the same improvement as in Temp., but TAO presents some improvement only over the upper ocean

(Zhu et al. 2021)

Summary...

- A pilot 40-year (1979-2019) ocean reanalysis was completed with NG-GODAS;
- NG-GODAS provides improved analysis results (especially in salinity), vs. the current NOAA operational GODAS/CFSR systems;
- An OSSE capability with NG-GODAS was set up for the tropical Pacific observing system;

Thanks!