Glider observations in the Western Mediterranean Sea: their assimilation and impact assessment using four analysis and forecasting systems

Ali Aydogdu, Romain Escudier, Jaime Hernandez-Lasheras, Carolina Amadio, Jenny Pistoia, Nikolaos Zarokanellos, Gianpiero Cossarini, Elisabeth Remy, Baptiste Mourre

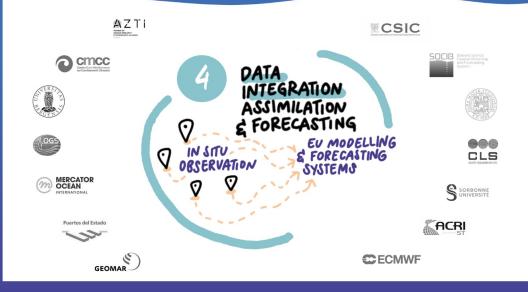
OceanPredict MEAP-TT

4 June 2025

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862626.

Scope of the tasks

EureSea


Balearic Islands Coastal Observing and Forecasting System

EureSea

Data Integration, Assimilation & Forecasting

Task 4.1 / 4.2 Novel sensors (gliders and floats) for assimilation and validation

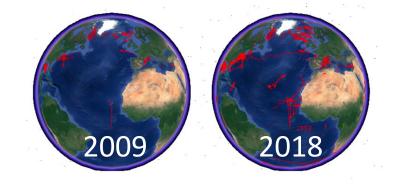
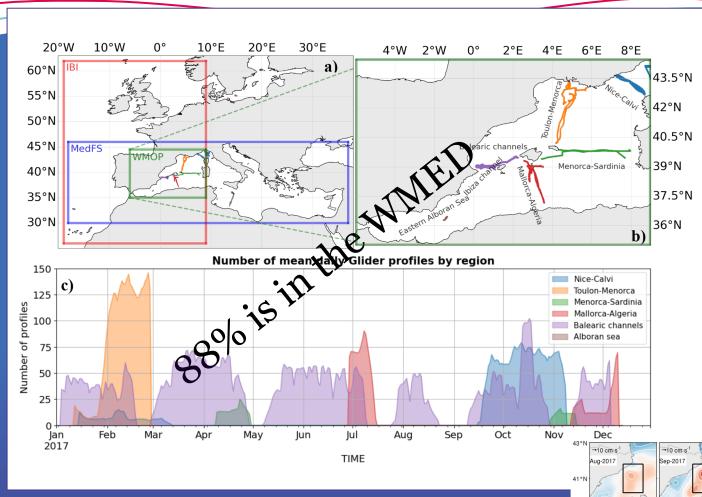
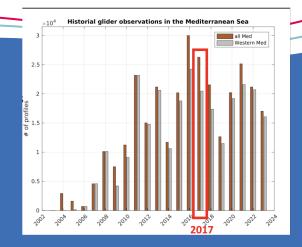




FIGURE 1 Development of the glider activity over the past decade. Gliders tracks of past deployments (left) until December 2009 (OceanObs'09) and (right) until October 2018 (OceanObs'19 submissions), as can be viewed using google-earth.

Testor et al. (2019)

Glider observations in the Mediterranean Sea

From Copernicus Marine Data Store 2017 is one of the years with most glider observations.

→10 cm s

→10 cm s

2°F

Dec-2017

4°E

Dec-2017

+10 cm s

→10 cm s⁻¹

2°E

Jan-2018

an-2018

Long-living mesoscale activity throughout the year.

Aguiar et al. (2022)

4°F

2°F

→10 cm s

Sep-2017

43°N

→10 cm s

ug-2017

→10 cm s

→10 cm s

2°E

4°E

Oct-2017

Oct-2017

+10 cm s

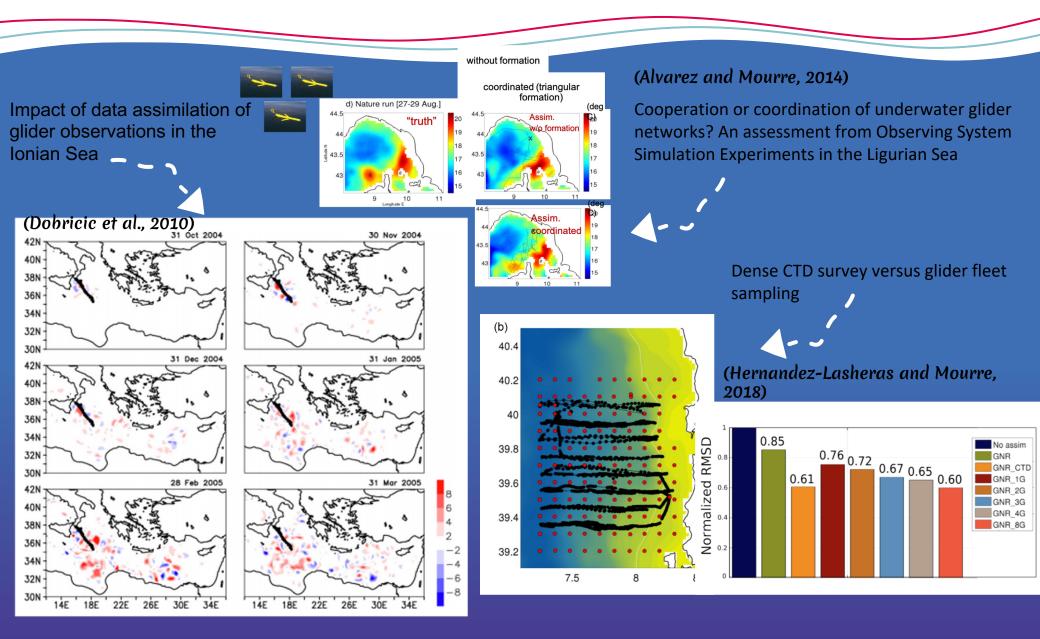
→10 cm s

2°F

Nov-2017

Nov-2017

Forecasting systems in the WMED


Eur eSea

WMOP 13-Nov-2019

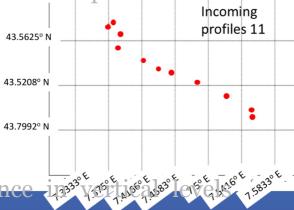
			Night time See Suffice Transversione (seg(c))
	IBI (MOi)	MedFS (CMCC)	
Domain	Iberia Biscay Irish + Western Med(reaching Sicily)	Mediterranean Sea (+ Atlantic box)	Western Med. Gibraltar to Corsica- Sardinia
Resolution	1/36º degree 50 z* vertical levels	1/24º degree (~4.5km) 141 z* vertical levels	1/50° degree (~2km) 32 vertical sigma-levels
Model	<i>NEMO</i> v3.6	<i>NEMO</i> v3.6	<i>ROMS</i> v3.4
Time step	150 sec (Barotropic step 5sec)	120 sec (Barotropic step 2.4sec)	120 sec (Barotropic step 6sec)
Parameteriza tions	Tides, atmospheric pressure	Tides, atmospheric pressure	No tides, No atm. pressure
	33 rivers climatology	climatological inputs from 39 rivers.	climatological inputs from 6 major rivers.
	GLS k-epsilon - Internal waves parametrization	Richardson number-dependent vertical diffusion	Generic model of two-equations GLS turbulent closure.
	Flather for barotropic Prescribed + relaxation area for baroclinic	Flather for barotropic currents and SSH. Orlanski for baroclinic currents	Flather for 2-D momentum. Chapman for surface elevation. Mixed radiation-nudging for 3-D equations.
Atmospheric forcing	ECMWF IFS (3h)	ECMWF HR 10km, 6h	AEMET (Spanish meteorological agency) HARMONIE 2.5km 1hr
LOBC	Copernicus Marine GLO-MFC	Copernicus Marine GLO-MFC	Copernicus Marine MED-MFC
Data Assimilation	SAM2 (SEEK Filter): can assimilate SLA AT, SST L3s, ARGO profiles	OceanVar: can assimilate SLA along tracks, ARGO vertical T/S profiles. SST relaxation to gridded product in NEMO	Multimodel Local EnOI: can assimilate SLA along-track, ARGO vertical T/S profiles, SST L4 satellite product, HF- Radar (Ibiza Channel)

EureSea

Earlier studies of the team and systems

Observation curation / processing

Pre-processing to handle horizontal correlations in glider observations:


- **Sub-sampling**: Removing profiles in the inference radius of the observation position
- Superobing: Averaging profiles falling into the same area to reduce the density. May not be appropriate due to the diurnal cycle in surface/subsurface.temperature and salinity.

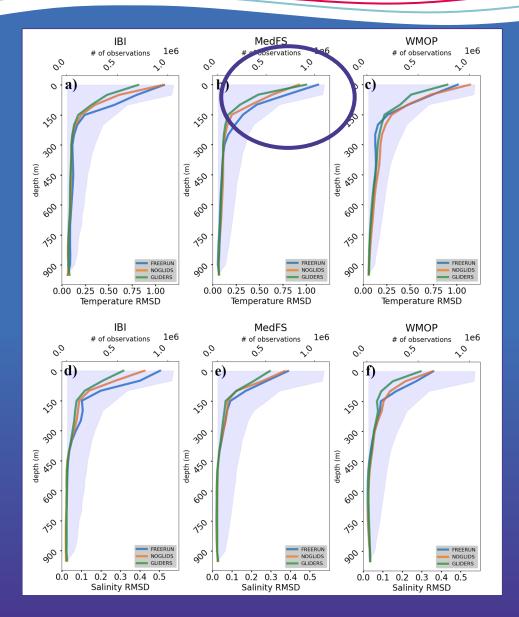
Pre-processing to handle vertical correlations in glider observations:

- **Binning** in vertical grid levels (Dobricic et al., 2010)
- Discarding observations with large variance in vertical levels
- Estimating **representativity error** from observation variance (Mourre and Chiggiato, 2014)

Other treatments of profiles may include:

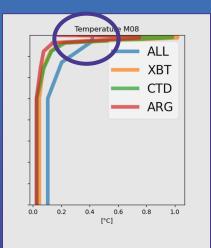
- Discarding profiles with vertical gaps larger than a certain threshold.
- Discarding profiles with low number of measurements.

EureSea


Experiment setup / Assimilated observations

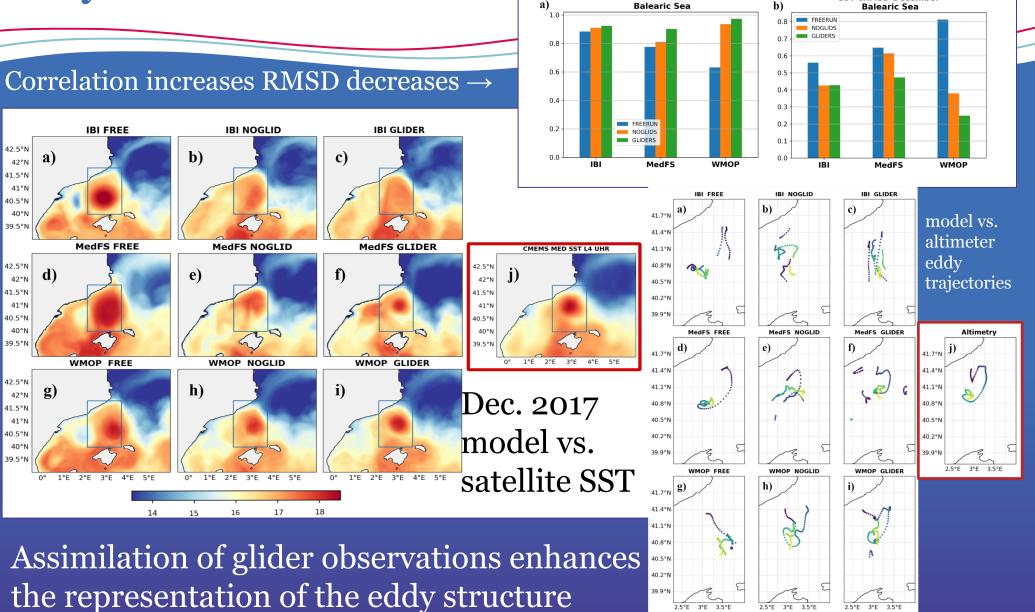
Eur**eSea**

			SOCIE Night-time Sea Surface Temperature (degC)
2017	MedFS	IBI	WMOP
FREERUN	No assimilation	No assimilation	No assimilation
NOGLIDS	SLA, ARGO, relaxation to Copernicus Marine SST L4 product	SLA, ARGO, SST ODYSSEA	SLA, ARGO, SST CMEMS MED HR
GLIDERS	GLIDER, SLA, ARGO, relaxation to Copernicus Marine SST L4 product	GLIDER, SLA, ARGO, SST ODYSSEA	GLIDER, SLA, ARGO, SST Copernicus Marine MED HR product


EureSea

Temperature & Salinity skills

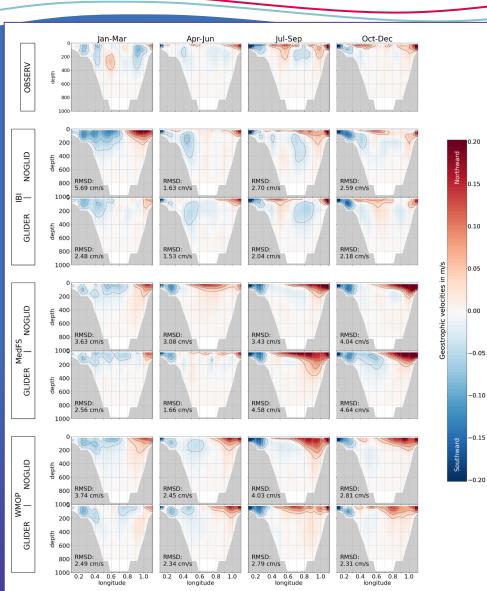
Mostly improved RMSD, up to 20%.


Issues where observation errors are kept small.

Eddy in the Balearic Sea

EureSea

SST cRMSD December



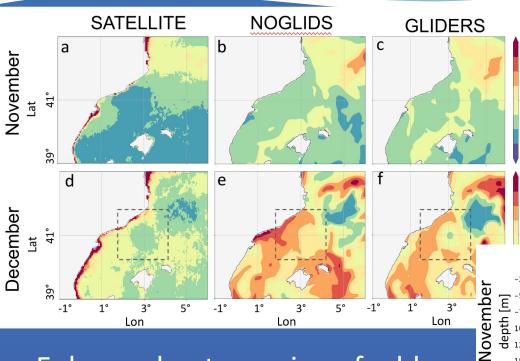
SST Correlation December

17-Aug 06-Sep 26-Sep 16-Oct 05-Nov 25-Nov 15-Dec

EureSea

Transport in the Ibiza Channel

Net transport through the Ibiza Channel is improved Especially, southward transport of WIW gets better.

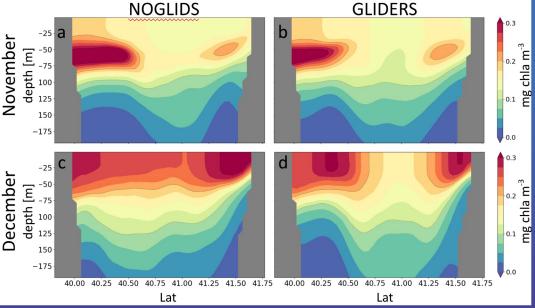

Impact on BioGeoChemistry

	MedFS (CMCC)	MedBFM (OGS)
Domain	Mediterranean Sea (+ Atlantic box)	Mediterranean Sea
Resolution	1/24º degree (~4.5km) 141 z* vertical levels	1/24º degree (~4.5km) 125 vertical levels
Model	NEMO v3.6	MedBFM (OGSTM-BFM)
Time step	120 sec (Barotropic step 2.4sec)	
Parameterizations	Tides, atmospheric pressure	plankton functional types: 4 phytoplankton groups, 4 zooplankton groups, 1 bacteria group Describes the biogeochemical cycle of N, P, C, Si and O. It includes the carbonate system dynamics
	climatological inputs from 39 rivers.	climatological inputs from 39 rivers.
	Richardson number-dependent vertical diffusion	
	Flather for barotropic currents and SSH. Orlanski for baroclinic currents	
Atmospheric forcing	ECMWF HR 10km, 6h	
LOBC	Copernicus Marine GLO-MFC	MED-MFC PHY
Data Assimilation	OceanVar: can assimilate SLA along tracks, ARGO vertical T/S profiles. SST relaxation to gridded product in NEMO	3DVarBio

Eur**eSea**

Eure Sea

Impact on BioGeoChemistry

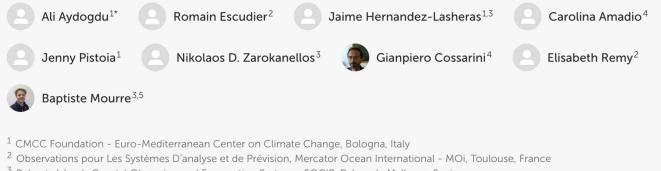


Enhanced outcropping of eddy following glider assimilation.

Improved representation of the eddy fields wrt to satellite chlorophyll

mg chla m⁻³

hla m⁻³


Eure Sea

ORIGINAL RESEARCH article

Front. Mar. Sci., 20 February 2025 Sec. Ocean Observation Volume 12 - 2025 | https://doi.org/10.3389/fmars.2025.1456463 This article is part of the Research Topic Demonstrating Observation Impacts for the Ocean and Coupled Prediction

View all 18 articles >

Glider observations in the Western Mediterranean Sea: their assimilation and impact assessment using four analysis and forecasting systems

- 3 Balearic Islands Coastal Observing and Forecasting System SOCIB, Palma de Mallorca, Spain
- ⁴ National Institute of Oceanography and Applied Geophysics OGS, Trieste, Italy
- ⁵ Mediterranean Institute for Advanced Studies (IMEDEA) CSIC-UIB, Esporles, Spain

Workshop with observation scientists/providers

the best practices in use of glider and floats i
On the accessibility to the glider / Argo floats of

 \Longrightarrow On the quality control (QC) in the assimilation

Leveraging the multi-system glider data assimilation experiments within EureSea to the international level

Victor Turpin⁴, Elisabeth Remy², Ali Aydogdu², Baptiste Mourre⁴, Romain Escudier², Pierre Testor⁵, Jaime Hernández-Lasheras⁴, Nikos Zarokanellos⁴, Brad deYoung⁴

¹OceanOPS, World Meteorological Organization / Intergovernmental Oceanographic Commission, Brest, France, ²Mercatar Ocean International, Toulouse, France, ⁴Ocean Modeling and Data Assimilation Division, Centro Euro-Mediterraneo Sui Cambiamenti Climatici, Bologna, Italy, ⁴SOCIB, Spain, ⁵LOCEAN / CNRS, Sorbonne University, Paris, France, ⁴Memorial University of Newfoundland, Halifax, Canada

FureSea

29 JUNE – 1 JULY 2022

Eure Sea

Internal Milestone #28

Joint workshop between CMCC SOCIB Task 4.2, Task 4.3, Task 4.4 partners and WP3 on sharing best practices on how to use novel sensors (glider, floats) data for assimilation and validation in the CMEMS (global and MED) and SOCIB operational systems (physical and biogeochemical)

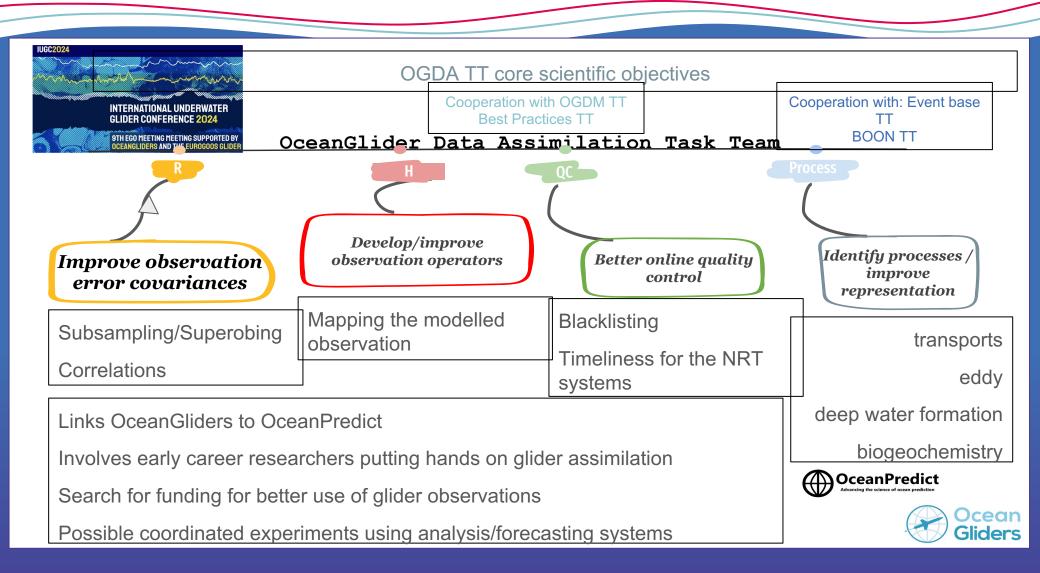
Date: 24 June 2021 10:00-12:00 CET

Goal: EuroSea Task 4.2 aims at evaluating the impact of the glider and BGC Argo observations on marine forecasting systems in the Mediterranean Sea. The question of where and how to access the data in both near-real-time (NRT) and delayed-time (DT) is critical for this task. Several issues have been identified concerning the glider data availability, especially for NRT systems. The objective of this workshop is to bring together European experts on glider data collection, processing and management with the data assimilation experts to open a discussion on this issues and propose solutions to use glider and float observations in operational forecasting systems in the best possible way.

AGENDA

- 10:00-10:15 Objectives and overview of the status (Ali Aydogdu)
- 10:15-10:25 Update on SOCIB experience (Jaime Hernandez)
- 10:25-10:35 NRT and delayed mode data exchange strategy and further opportunities

(Victor Turpin / Daniel Hayes)


10:35-10:45 The status of glider observations in the CMEMS (Thierry Carval) 10:45-12:00 Discussion

Best practices on how to use novel sensors (gliders and floats) for assimilation and validation

A need...

- for more time to assimilate the high-quality glider and BGC-Argo observations in the NRT systems however, DM observations are already high-quality and synchronized to the required repositories.
- to come up with a universal solution. CMEMS (European) and SOCIB (Balearic) systems involved in EuroSea can be taken as a base to detect the need for improvements and propose solutions for every step of the data flow and usage.
- for *communication* between the communities, e.g., Argo vs. Glider communication between on coherent procedure and avoid inconsistencies, Argo + Glider vs. modelling + assimilation communities for the best practices on the use of observations in forecasting and reanalysis systems, e.g., on QC standards.

Engagement with OceanGliders community

Eur Sea

Shared outcomes at IUGC (Goteborg June 2024), IQuOD/SOOPIP/GTSPP/XBT Science (Bologna November 2024), OP'24 Symposium (Paris, November 2024)

Concluding Remarks

- A year-long coordinated set of experiments is performed in the Western Mediterranean Sea to assess the impact of glider observations using four analysis and forecasting systems.
- Aim is
 - to develop capacity of assimilating glider observations in the operational systems covering Western Mediterranean
 - set the scene for intercomparison in the overlapping areas
 - develop diagnostics to analyse the results
- Assimilation of gliders
 - improve consistently the analysis in all systems
 - provides a better representation of eddy structure
 - helps to ameliorate transport of water masses
- EuroSea provided an opportunity to interact and collaborate with in-situ observation community