Sediment control of summer hypoxia development in the Pearl River Estuary

Liuqian Yu¹, Zheng Chen ¹, Jiying Li², and Jianping Gan²

¹EOAS, HKUST(GZ), ²OCES, HKUST

OceanPredict MEAP-TT | 1st Jun 2023

Earth, Ocean and Atmospheric Sciences

Sediment O₂ uptake is critical to hypoxia formation

Sediment contribution to total consumption (%) increases with decreasing hypoxic-layer thickness

Deep water column

Shallow water column

Fennel & Testa 2019

Mississippi River Delta

Pearl River Estuary

Discharge (m ³ /s)	17,000
N load (10 ⁶ mol/d)	190
Residence time (d)	30
Hypoxic layer thickness (m)	4
Max hypoxic area (km²)	23,000 (mean 15,000

10,000	
77	
10	←

3

~1000

← shallower; stronger tidal mixing...

Data source: Fennel & Testa 2019; Li et al. 2020; Yu et al. 2021

Mississippi River Delta

FIG. 1. The frequency of bottom-water hypoxia from shelf-wide hypoxia mapping (1985–2014) (updated from Rabalais et al. (2007b); frequency is determined from stations for which there are data for at least half of all cruises. Asterisks (*) indicate locations of near-bottom oxygen meters; transects C and F identified. Data source: N. N. Rabalais and R. E. Turner.

Pearl River Estuary

"Regular" summer survey in PRE only started since 2010s Gain insights from

- comparisons with other hypoxic systems (e.g., NGOM)
- combining observations and model simulations

 Summer cruise survey
→ Hypoxia is mostly limited to the bottom boundary layer <

(upper boundary of BBL – depth where buoyancy frequency N² >0.01/s)

Tight correlation between bottom boundary layer (BBL) and hypoxic layer thickness

20

40

Hypoxia is mostly limited to the bottom boundary layer

High sediment oxygen consumption

Coupled physical-biogeochemical model

Air-sea exchange

Regional Ocean Modelling System (ROMS)

- A **process-oriented** modelling framework forced by typical summer forcing

Model-data comparisons: bottom O₂ & hypoxia

Qualitatively reproduce the observed patterns of hypoxic waters and key physical-BGC response to river discharge and wind-driven shelf current.

Yu et al. (2020); Yu & Gan (2022)

Model-data comparisons: sediment oxygen consumption

Oxygen budget → sediment dominates the total consumption

Mississippi Delta

SOC also dominates, though relatively lower than in PRE

Can a simple SOC parameterization work?

$$SOC = f(T, O_2) = 6 * 2^{\frac{T}{10}} * \left(1 - exp\left(-\frac{O_2}{30}\right)\right)$$

$$SOC = f(T, O_2, Chl) = 6 * 2^{\frac{T}{10}} * \left(1 - exp\left(-\frac{O_2}{30}\right)\right) *$$
$$(0.15 * exp(-1.58 + 0.5 * Chl) + 0.43)$$

 The equation works for
Northern Gulf of Mexico (Hetland & DiMarco 2008; Fennel et al. 2013)
East China Sea (Zhang et al. 2018)
Pearl River Estuary

Can a simple SOC parameterization work?

Summary

Sediment oxygen consumption is the dominant sink leading to hypoxia formation off Pearl River Estuary

A simple oxygen model with SOC = $f(T, O_2, Chl)$ fit by observations can reasonably reproduce the observed hypoxia extent. \rightarrow highlighting the importance of SOC; a computationally-cheap alternative model

Thank you! liuqianyu@ust.hk