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Motivation and outline

● Motivation: underwater acoustic characterization

● Motivation: acoustic measurements as an opportunity for recovering from poorly or under- 

sampled ocean areas (ideas from the 70s/80s), especially at the mesoscale (10-100km)

● Methods: the “underwater acoustic sound propagation observation operator” to 

investigate data-driven approaches in DA 

● Results from idealized configurations

● Conclusions and discussions



● Several biological, civil, industrial and military activities rely on the knowledge of the 

underwater environment, including the sound propagation characteristics, motivating in 

turn at least two scientific questions:

○ Is physical ocean data assimilation able to improve our underwater sound 

propagation simulations?

○ Are sound propagation measurements able to improve our physical ocean 

knowledge?
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Experimental setup

Sound source

Corsica

Italian
Peninsula

Network of
receivers

Idealized configuration with one sound 
source, and a radial network of 
receivers

Realistic in-situ (Argo) and satellite 
(SLA) observational sampling, taken by 
CMEMS

Assessing the effect of the physical DA 
on the sound propagation at a distance 
of 30 and 60 km and at frequencies of

75 Hz (ship noise)

2.5 kHz (active sonar applications)

The acoustic prediction system is based on the 
Range-dependent Acoustic Model (RAM), a 
2-D range-dependent acoustic model using the 
parabolic equation (PE) method



DA schemes used and compared

● 3DVAR: classical 3DVAR formulation with control vector transformation, vertical multivariate 
EOFs and recursive filter on the horizontal

● 4DVAR: simplified TL/AD where only T/S are propagated in time (i.e. ∂M/∂u = 0) and 
u/v/SSH are derived from the balance operators (3.5DVAR!). Switching the TL operator with 
the balance operator (V = M Vb Vh Vv  →  V = Vb M Vh Vv ). Roughly halves the cost with 
respect to a full 4DVAR, at the expenses of some accuracy.

● HYBRID: combining the stationary B (as in 3DVAR) with an ensemble-derived 
flow-dependent component. Note: also for the ensemble component, we use the same 
parametric definition as for the stationary component, namely the ensemble is used to 
estimate flow-dependent multivariate EOFs and horizontal correlation length-scales (it does 
not rely on sample covariance matrix! it does not need localization as the eigen-decomp. 
acts as a filter! it does not allow for anisotropies!)



DA schemes used and compared

4DVAR HYBRID

0 =
fully ensemble

1 =
fully stationary

δx

Mδx (w/o dynamics)

Mδx (with dyn.)

M(x+δx) - M(x)



Results in acoustic space
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Sound propagation path, time of arrival and geometry at arrival (angles) depend on the 
underlying sound speed fields (some analogy with GPS Zenith Total (Slant) Delay, or GPS Radio 
Occultation). 
Two possible technological approaches, which lead to different inversion problems :

1. Measure time/angle of arrival at the receiver in a classical Ocean Acoustic 
Tomography (OAT) formulation to infer sound speed (and then T/S) along the 
propagation path

2. Measure Transmission Loss at the receiver to infer sound speed (and then T/S) along 
the propagation cross-section

Motivation
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Pros: Relatively well-posed, analytical obs operator (and not much non-linear), straight forward to implement

Cons: Technological difficult requirement for very precise measurements: feasible only for very long ranges; typically 
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2. Measure Transmission Loss at the receiver to infer sound speed (T/S) along the 
propagation cross-section

Pros: Technologically more appealing for short ranges

Cons: Worse-posed, complex obs operator (and strongly non-linear: questionable validity for TL on ranges > 10 

km), not much explored in literature
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Outline

Assimilate TL data relative to a 60 km propagation 
path over the Ligurian Sea (western Mediterranean 
Sea) at a frequency of 75 Hz (typical of ship noise).

We consider a hydrophone tower with 18 receivers 
(upper 200m).



Outline

Assimilate TL data relative to a 60 km propagation 
path over the Ligurian Sea (western Mediterranean 
Sea) at a frequency of 75 Hz (typical of ship noise).

We consider a hydrophone tower with 18 receivers 
(upper 200m).

Use of data-driven algorithms:

● To fully replace DA (e.g. Deep DA)

● To replace parts of a DA scheme (QC, BC, OO, 
BAL, TL/AD, etc.)



Outline

Assimilate TL data relative to a 60 km propagation 
path over the Ligurian Sea (western Mediterranean 
Sea) at a frequency of 75 Hz (typical of ship noise).

We consider a hydrophone tower with 18 receivers 
(upper 200m).

Use of data-driven algorithms:

● To fully replace DA (e.g. Deep DA)

● To replace parts of a DA scheme (QC, BC, OO, 
BAL, TL/AD, etc.)



Methods

Canonical Correlations (CCA)

Find the modes of (co)variability that 
maximize the cross correlation 
between different sets of variables 
(the input, T, and the output, TL, data 
of the observation operator).

CCA relies on a linear 
transformation, therefore its TL/AD 
version is straight forward.

versus
Neural Networks (NN)

Approximate non-linear functions 
through connecting neurons across 
different layers.

NNs are non-linear, therefore their 
use in variational schemes shall 
consider some sort of linearization.

Observation operator:    yTL = HAC(x) + ε     HAC(x) ≡ RAM

Tangent-linear approximation:           HAC(x) - HAC(xb) ≅ HAC(x - xb)

x: Cross-section of Temperature (2D)           y: profile of transmission loss



Correlation matrix

T-TL Correlation Matrix

The Correlation matrix in fact underlies 
directly the relationship between the input 
and the output used in the CCA-based 
observation operator



Fitting to test data

Training dataset

A ~ 3000-member ensemble of temperature 
cross-sections (stochastic physics + multiple 
times), to each of them the RAM propagation 
model is coupled to provide pairs of T-TL 
realizations

80% is used for training
20% is used for test (independent verification)

NN configuration
ReLU activation
3 layers; 128 neurons; 128 batches; 
5000 epochs

● NUMDER: Richardson extrapolation
● TFAD: Tensorflow Reverse-Mode Automatic 

Differentiation



Coupled oceanic-acoustic OSSEs

OSSE configuration

OSSE for the coupled ocean-acoustic 
system relies on running RAM on the 
nature run to extract TL observations, which 
are subsequently assimilated through either 
the CCA or the NN observation operators.

Multiple outer loops may be embedded to 
refine the linearization (in case of the NN 
observation operator).



The inversion problem

The inversion relies on the joint effect of the AD obs operator and vertical EOFs



The inversion problem

The inversion relies on the joint effect of the AD obs operator and vertical EOFs

Background quality check acts to exclude some observations



Mean temperature differences

Comparable average increments in terms of spatial patterns across the section

NN is able to discriminate more clearly which areas to spread the increments to



Forecast skill scores

Ctrl: NO DA CCA: CCA OO NN: NN OO NN-C: NN OO linearized around Climatology



Conclusions & Discussion

Methodological
● Whenever DA approximates a relationship through some sort of regression (observation operators, balance 

operators, TL/AD operators), then it is worth considering data-driven NN as a possible technique.

● Strongly non-linear functions can greatly benefit from NN compared to traditional methods

● Off-line or sequential use: straight-forward, also in VAR schemes where linearization can be given by the 

automatic differentiation tools

● On-line coupling: need probably more robust/flexible libraries than those available now (e.g. ModernFortran) or 

need to adopt other specific approaches (e.g. SmartSIM orchestrator*) 

Technological
● Acoustic environmental characterization is, in general, significantly affected by physical data assimilation and its  

degree of sophistication

● Although quite ill-posed, inverting Transmission Loss measurements may be promising as complementary 

observing networks for operational oceanographic applications (e.g. focus on the mesoscale)



Thank you for the attention,

Questions?

Most of the material presented here was taken from:

● Storto, A., Falchetti, S., Oddo, P., Jiang, Y.-M., & Tesei, A. (2020). Assessing the impact of 
different ocean analysis schemes on oceanic and underwater acoustic predictions. Journal of 
Geophysical Research: Oceans, 125, e2019JC015636. 
https://doi.org/10.1029/2019JC015636

● Storto, A., De Magistris, G., Falchetti, S., & Oddo, P. (2021). A Neural Network–Based 
Observation Operator for Coupled Ocean–Acoustic Variational Data Assimilation, Monthly 
Weather Review, 149(6), 1967-1985, DOI: https://doi.org/10.1175/MWR-D-20-0320.1

Contact: andrea.storto@cnr.it

We do have 2 postdoc vacancies at CNR ISMAR (Rome) to work 
on coupled DA and optimal model bias correction (deadline: 5/OCT)
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Impact of uncertainty on sound speed 
propagation

A large multi-perturbation 
ensemble helps understand 
the sensitivity of the 
underwater sound 
propagation to the model 
uncertainties

(through ensemble spread 
diagnostics and clustering)



Results in physical space

At 1-day forecast:

Similar improvement when 
4DVAR and HYBRID are 
used


