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• Analysis and forecast error covariance – a quick review
• An adjoint approach for computing expected error covariance matrix information
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• Properties of error covariance for growing and decaying instabilities
• Forecast skill
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Motivation

• Quantification of errors and uncertainties of 
analyses and forecasts is important but 
challenging.

• Ensemble methods provide a direct means 
for estimating error covariance matrices:

- limited sample size necessitates
localization and inflation

• Direct estimates of  analysis error covariance 
in variational DA systems are challenging to 
compute (e.g. Ngodock et al., 2020) and are 
often underestimates (e.g. Fisher and 
Courtier, 1995).

• An approach is described here which 
employs the tangent linear and adjoint of a 
4D-Var DA system to explore the properties 
and topology of the expected analysis and 
forecast error covariances matrices.



The Expected Analysis Error Covariance

𝒙𝑎 = 𝒙𝑏 +𝑲𝒅

𝑲 = 𝑩𝑯𝑇 𝑯𝑩𝑯𝑇 + 𝑹 −1

𝒅 = 𝒚𝑜 −𝐻 𝒙𝑏

The best, linear, unbiased estimate:
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Expected analysis error covariance matrix:

𝑨 −𝜏 = 𝑰 − 𝑲𝑯 𝑩 𝑰 − 𝑲𝑯 𝑇 +𝑲𝑹𝑲𝑇

𝑨 0 = 𝑴𝑏𝑨 −𝜏 𝑴𝑏
𝑇 𝑭 𝑡 = 𝑴𝑓𝑨 0 𝑴𝑓

𝑇
𝑴𝑏 = TL model linearized about 𝒙𝑏

𝑴𝑓 = TL model linearized about 𝒙𝑓



An Alternative Approach

𝒙𝑎 = 𝒙𝑏 + 𝑓 𝒅

Treat the DA system as a function of 𝒅:

Consider an infinite ensemble of analyses computed from perturbed 
observations 𝑁 𝟎,𝑹 and background 𝑁 𝟎,𝑩 .

To 1st –order the expected analysis error covariance is given by:

𝑨 −𝜏 = 𝑰 − Τ𝜕𝑓 𝜕𝒅 𝑯 𝑩 𝑰 − Τ𝜕𝑓 𝜕𝒅 𝑯 𝑇 + Τ𝜕𝑓 𝜕𝒅 𝑹 Τ𝜕𝑓 𝜕𝒅 𝑇

Τ𝜕𝑓 𝜕𝒅 =

Τ𝜕𝑓 𝜕𝒅 𝑇 =

Tangent linearization of DA system

Adjoint of DA system

(Moore et al, 2012)



𝑨 −𝜏 = 𝑰 − Τ𝜕𝑓 𝜕𝒅 𝑯 𝑩 𝑰 − Τ𝜕𝑓 𝜕𝒅 𝑯 𝑇 + Τ𝜕𝑓 𝜕𝒅 𝑹 Τ𝜕𝑓 𝜕𝒅 𝑇

𝑨 0 = 𝑴𝑏𝑨 −𝜏 𝑴𝑏
𝑇

𝑭 𝑡 = 𝑴𝑓𝑨 0 𝑴𝑓
𝑇
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x• Costly to compute.
• Provides an explicit analytical operator for 

each covariance matrix -> far more 
theoretically appealing than an ensemble.

• We can exploit iterative Krylov methods and 
theorems of linear algebra to explore 
covariance matrix properties and topology.



Some Underlying Assumptions

• Perturbations about the unperturbed forecast mimic forecast errors (e.g. Belo-Pereira and 
Berre, 2006; Berre et al, 2006) => the unperturbed forecast represents the ensemble mean.

• The tangent linear assumption is invoked for everything:

Τ𝑑𝜺 𝑑𝑡 = 𝜱 𝑡 𝜺 𝑡

𝜺 𝑡 = 𝒙 𝑡 − 𝒙𝑓 𝑡

𝜺 𝑡 = 𝑴𝑓 0, 𝑡 𝜺 0

𝜱 𝑡 = the “resolvent” matrix

𝑴𝑓 0, 𝑡 = the “propagator” matrix

𝑇𝑟 𝜱 𝑡 yields information about the flow of probability

𝑑𝑒𝑡 𝑴𝑓 0, 𝑡 represents the volume occupied by errors in state-space**

** |det(M)| is the volume of the parallelepiped defined by the rows of M



Paternal Twin Experiments

ROMS
Sequential 4D-Var
2 day 4D-Var cycles
Obs of T,  0-1000m
Obs spacing ds=3 
Sampled once per day
Obs error=0.3C
Strong & weak constraint
m=25 inner-loops
k=1 outer-loops

A(0) and F(t): 
(3×105) × (3×105) 

Baroclinic instability in a SH re-entrant channel
1000km X 2000km X 5000m

Truth Forecast
model

2.5 km
resolution

20 km
resolution

• Relaxation of a meridional 
temperature front

• Unforced
• No salinity

• Fronts are ubiquitous in the 
ocean at all scales.





Nature 
Run
(2.5 km)

Forecast 
model: 
No DA
(20 km)

Forecast 
model: DA 
analyses
(20 km)

Note

• Conversion of APE to KE
• DA energizes the circulation by “propping 

up” isopycnals
• Weak constraint corrections for model error 

can further energize the circulation
• Define error covariance using energy norm:

𝜺 = 𝒙 − 𝒙𝑓

𝑪 = 𝑼𝐸 𝜺𝜺𝑇 𝑼𝑇

where 𝒙𝑇𝑼𝑇𝑼𝒙 is the total energy

Kinetic energy time series

nature run

forecast model, no DA
forecast model, strong 4D-Var

forecast model, weak 4D-Var

example forecasts

decaying wave #2 growing wave #1



hypersphere => 
flat EOF spectrum

hyperellipse => 
peaked EOF 
spectrum

A Geometrical Interpretation of A and F

hyper volume ∝ (det(UAUT))1/2 or (det(UFUT))1/2

total variance = Tr(UAUT) or Tr(UFUT) 
𝑇𝑟 𝑨 =

𝑖=1

𝑁

𝜆𝑖𝑑𝑒𝑡 𝑨 =ෑ

𝑖=1

𝑁

𝜆𝑖



“drift”

Forecast Error PDF

PDF of forecast
starting points

PDF of forecast
end points

𝜺 𝑡0 𝜺 𝑡

Τ𝑑𝜺 𝑑𝑡 = 𝜱𝜺 𝑡 + 𝝃 𝑡 = 𝒂 𝑡 + 𝝃 𝑡

൘𝜕𝑝 𝜕𝑡 = −

𝑖=1

𝑁

൘𝜕 𝑎𝑖𝑝 𝜕𝜀𝑖 +
1

2


𝑖=1

𝑁



𝑗=1

𝑁

ൗ𝜕2 𝑞𝑖,𝑗𝑝 𝜕𝜀𝑖𝜕𝜀𝑗𝑝 ≡ 𝑝 𝜺, 𝑡 𝜺0, 𝑡0

Fokker-Planck Equation

“drift” “diffusion”

Conditional probability

“diffusion”

𝐸 𝝃𝝃𝑇 = 𝑸 = 𝑞𝑖,𝑗

𝒞𝑖 = 𝒂 𝑡 𝑝 −
1

2


𝑗=1

𝑁

Τ𝜕 𝑞𝑖,𝑗𝑝 𝜕𝜀𝑖

“probability current”

൘𝜕𝑝 𝜕𝑡 = −

𝑖=1

𝑁

Τ𝜕𝒞𝑖 𝜕𝜀𝑖

Stochastic model error



The Fokker-Planck Equation

൘𝜕𝑝 𝜕𝑡 = −

𝑖=1

𝑁

൘𝜕 𝑎𝑖𝑝 𝜕𝜀𝑖 +
1

2


𝑖=1

𝑁



𝑗=1

𝑁

ൗ𝜕2 𝒒𝒒𝑇 𝑖𝑗𝑝 𝜕𝜀𝑖𝜕𝜀𝑗

“drift” “diffusion”

Forecast errors evolve according to:

The resolvent matrix 𝜱(𝑡) “generates” a vector-field 𝒂 𝑡 = 𝑎𝑖 which is the “drift” in 
the Fokker-Planck equation i.e. that translates the mean value of 𝜺 and spreads the pdf 
since, in general, the divergence of the “dirift” does not vanish.

Τ𝑑𝜺 𝑑𝑡 = 𝜱 𝑡 𝜺 𝑡 + 𝝃 𝑡 = 𝒂 𝑡 + 𝝃 𝑡

From the Jacobi formula:

Τ𝜕𝑙𝑛 𝑑𝑒𝑡 𝑭 𝑡 𝜕𝑡 = 2𝑇𝑟 𝜱 𝑡

The divergence 
of the “drift”

Liouville’s equation

𝑇𝑟 𝜱 𝑡 > 0 𝑇𝑟 𝜱 𝑡 < 0

divergent drift convergent drift

Note: independent of U 
(i.e. similarity invariant)



Determinant & Trace Estimation

𝑙𝑜𝑔 𝑑𝑒𝑡 𝑼𝑨𝑼𝑇 =

𝑖=1

𝑁

𝑙𝑜𝑔 𝜐𝑖

𝑇𝑟 𝑼𝑨𝑼𝑇 =

𝑖=1

𝑁

𝜈𝑖

𝑇𝑟 𝑼𝑭(𝑡)𝑼𝑇 =

𝑖=1

𝑁

𝜆𝑖

• Estimates based on Monte Carlo sequence of 
Lanczos factorizations (Bai et al, 1996)

• Yields upper and lower bounds on estimates
• Expensive!

Independent estimate of Tr 
following Fisher and Courtier 
(1995)

cycle 2 cycle 26

𝑙𝑜𝑔 𝑑𝑒𝑡 𝑼𝑭(𝑡)𝑼𝑇 =

𝑖=1

𝑁

𝑙𝑜𝑔 𝜆𝑖

For Gaussian errors:             
-1×entropy reduction 
(Shannon & Weaver, 1949)



1

2
Τ𝜕𝑙𝑛 𝑑𝑒𝑡 𝑭 𝑡 𝜕𝑡 = 𝑇𝑟 𝜱 𝑡

divergence of “drift”

ln 𝑑𝑒𝑡 𝑴𝑓(𝑡) =
1

2
ln Τ𝑑𝑒𝑡 𝑭(𝑡) 𝑑𝑒𝑡 𝑭(0)

From Liouville’s equation, we also have:

𝑑𝑒𝑡 𝑴𝑓(𝑡) = Volume of state-space occupied 
by the forecast errors

ln 𝑑𝑒𝑡 𝑴𝑓(𝑡)

“drift” switches from convergent to divergent around day 27

“drift” always convergent for cycle 26

volume of state-space switches from 
decreasing to increasing

volume of state-space always decreasing for cycle 26

Demise of wave #2 instability

Growth of wave #1 instability



Topology of Error Covariance Matrix

𝜆1

𝜆2

𝜆3

Leading eigenvalues for cycle 20

𝝀𝟏 for each cycle

% variance explained by leading 30 EOFs

EOF 1

EOF 2

EOF 3

• Error covariance hyper-ellipse 
becomes more elongated with 
increasing lead time.

• ~30 EOFS (i.e. 0.01% of the 
spectrum) account for almost all of 
the variance at long-lead times. 



EOF 1 versus forecast lead-time



What we know so far:

• We have seen that:
- the forecast error covariance matrix stretches in a few preferred 

directions
- the volume of state-space occupied by forecast errors generally 

decreases with increasing lead-time
- the entropy of the errors generally decreases over time 

=> self-organization

• Recall the assumption that forecast errors evolve linearly according to:

• As 𝒕 → ∞ the fastest growing eigenmodes of 𝑴𝒇 0, 𝑡 will emerge and 

determine the leading EOFs

𝜺 𝑡 = 𝑴𝑓 0, 𝑡 𝜺 0

SST errors



Forecast Error Variance as a Predictor of Forecast Skill

• Ensemble spread often used as a surrogate 
for skill of ensemble mean in NWP: smaller 
spread - > smaller forecast error (e.g. Epstein, 

1969; Leith, 1974; Barker, 1991; Molteni et al, 1996).

• This assumption is often problematic and 
the veracity of relationship depends on 
circulation variance compared to 
climatology (Houtekamer, 1991; Whitaker and 

Loughe, 1998).

• Theoretical limit of ~0.8 correlation 
between ensemble spread and forecast skill 
(Houtekamer, 1991; Grimit and Mass, 2007).

• Also strongly dependent on forecast skill 
metric (Hopson 2014)

Mean forecast error on day 12

Day 12 forecast error std from leading 3o EOFs of F

Expected forecast error is an underestimate of actual 
forecast error, but locations of largest error variance are 
captured well

mean Rossby number



Summary

Decay of wave number 2 instability Growth of wave number 1 instability

Two dynamical regimes with different forecast error behaviors were identified:



Summary

• An alternative approach for exploring properties of expected error covariances explored.
• Provides an explicit operator for the expected analysis error (A) and forecast error (F) 

covariance matrices -> provides in-depth information about behavior and topology.
• Approach applied to dynamics of baroclinically unstable fronts – two distinct regimes 

identified.
• Future experiments will include surface forcing – can be important for frontogenesis and 

frontolysis.
• Fronts are ubiquitous in the ocean at all scales -> scaling analysis may shed light on how 

the results presented here apply at other scales (such as the sub-mesoscale).
• While computationally demanding, the adjoint-based approach proposed here will 

become more tractable for systems of larger dimension, especially in light of speed-ups of 
4D-Var.

• Potential practical utility as an indicator of expected forecast error.

Moore, A.M.  and Arango, H.G., 2021: On the behavior of ocean analysis and forecast error 
covariance in the presence of baroclinic instability. Ocean Modelling, 
https://doi.org/10.1016/j.ocemod.2020.101733


