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Motivation

F(t)

Quantification of errors and uncertainties of
analyses and forecasts is important but
challenging.
Ensemble methods provide a direct means
for estimating error covariance matrices:

- limited sample size necessitates X A(—’C)

localization and inflation xf
Direct estimates of analysis error covariance .4 ;.

in variational DA systems are challenging to 4D-Var

compute (e.g. Ngodock et al., 2020) and are ! !

often underestimates (e.g. Fisher and
Courtier, 1995).

An approach is described here which < > < >
employs the tangent linear and adjoint of a Analysis Forecast

4D-Var DA system to explore the properties

and topology of the expected analysis and

forecast error covariances matrices.




The Expected Analysis Error Covariance

The best, linear, unbiased estimate: E(t)
xa — xb + Kd A
A(O
d=(y’ - H(x")) X | ac (0)
xf
— :
K= BHT(HBHT + R)_l . 4D-Var ! i
| I | >
Expected analysis error covariance matrix: 0 t
< > < >
Analysis Forecast

A(—1) = (I - KH)B(I — KH)" + KRKT

M, = TL model linearized about x”

_ _ T _ T
A(0) = M, A(=T)M, F() MfA(O)Mf M = TL model linearized about x/



An Alternative Approach

Treat the DA system as a function of d:

x% = xP + f(d)

Consider an infinite ensemble of analyses computed from perturbed
observations N(0, R) and background N(0, B).

To 15t —order the expected analysis error covariance is given by:

A(—1) = (I — (0f /od)H)B(I — (0f /0d)H)" + (9f /0d)R(0f /0d)"

(Moore et al, 2012)
(0f /od) = Tangent linearization of DA system

(0f/0d)" = Adjoint of DA system



A(—1) = (I — (of /od)H)B(I — (0f /0d)H)" + (9f /0d)R(0f /0d)"

A(0) = M,A(—T)M],
F(t) = M;A(0)M;

Costly to compute.

Provides an explicit analytical operator for
each covariance matrix -> far more
theoretically appealing than an ensemble.
We can exploit iterative Krylov methods and
theorems of linear algebra to explore
covariance matrix properties and topology.

F(t)
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Some Underlying Assumptions

* Perturbations about the unperturbed forecast mimic forecast errors (e.g. Belo-Pereira and
Berre, 2006; Berre et al, 2006) => the unperturbed forecast represents the ensemble mean.

g(t) = x(t) — 27 (t)

* The tangent linear assumption is invoked for everything:

de/dt = D(t)e(t) @D (t)=the “resolvent” matrix
g(t) = M(0,t)(0) M (0, t)= the “propagator” matrix

Tr((b(t)) yields information about the flow of probability

det (Mf(O, t)) represents the volume occupied by errors in state-space™

** | det(M)] is the volume of the parallelepiped defined by the rows of M



Relaxation of a meridional 1600

temperature front
Unforced
No salinity

Fronts are ubiquitous in the &£ 100

ocean at all scales.

Paternal Twin Experiments
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* Weak constraint corrections for model error
Forecast can further energize the circulation
model: DA * Define error covariance using energy norm:
analyses e=x—xl S
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where xTUT Ux is the total energy



A Geometrical Interpretation of A and F

hypersphere =>
flat EOF spectrum

hyper volume « (det(UAUT))Y2 or (det(UFUT))V/2

total variance = Tr(UAU’) or Tr(UFU')

\ﬁuz

hyperellipse =>
peaked EOF
spectrum

N
det(A) = ﬂzi
=1

N
Tr(A) = z A
=1



Forecast Error PDF

Stochastic model error

PDF of forecast
starting points de/dt = ¢£(t) + < (t) — a(t)+ f(t)
PDF of forecast \

end points E{$¢"}=Q = (Qi,j)

“diffusion”
>
I I
g(ty) g(t) Ci = a(®)p - EZ 2(q,0)/ 0%

Conditional probability Fokker-Planck Equation /=
N 1 N “probability current”

p = p(& tlep, to) ap/at = —z 0(aip)/a€i +3 z 02(q; )/ 0¢:0¢; Y
< == ap / ot = — z 9C,/d¢;

“drift” “diffusion” i=1




The Fokker-Planck Equation

Forecast errors evolve according to:
de/dt = d(t)e(t) + &E(t) = a(t)+

The resolvent matrix @(t) “generates” a vector-field a(t) = (a;) which is the “drift” in
the Fokker-Planck equation i.e. that translates the mean value of € and spreads the pdf
since, in general, the divergence of the “dirift” does not vanish.

ap/at = —ZN: a(aip)/asi +%Z
i=1

N N
2.7
i=1j=
“drift”

7D )/0¢€0¢; Liouville’s equation

“diffusion” f

x A L

_>—>

aln(det(F(t)))/atz2Tr(cb(t)) P AN

Note: independent of U ' Tr(tb(t)) > 0 Tr(tb(t)) <0

. L . The divergence
(i.e. similarity invariant) of the “drift” divergent drift convergent drift

From the Jacobi formula:




Determinant & Trace Estimation

N
log(det(UAUT)) = z log(v;)

I=1N

log(det(UF(£)UT)) = 2 log (1)

log,,(In(det(p)!/?))

= —
Tr(UAUT) = ZVi \

i—1 For Gaussian errors:

(Shannon & Weaver, 1949)

(T (N

N -1xentropy reduction
Tr(UF(H)UT) = Z A
i=1

Estimates based on Monte Carlo sequence of
Lanczos factorizations (Bai et al, 1996)

Yields upper and lower bounds on estimates
Expensive!

Independent estimate of Tr /

following Fisher and Courtier
(1995)

|0910\ i {r))

log, ,(Tr(F)
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“drift” switches from convergent to divergent around day 27
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Topology of Error Covariance Matrix

EOF 2
A2

L

, EOF 3
A EOF1

Error covariance hyper-ellipse
becomes more elongated with
increasing lead time.

~30 EOFS (i.e. 0.01% of the
spectrum) account for almost all of
the variance at long-lead times.
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What we know so far:

We have seen that:
- the forecast error covariance matrix stretches in a few preferred
directions
- the volume of state-space occupied by forecast errors generally
decreases with increasing lead-time
- the entropy of the errors generally decreases over time
=> self-organization

Recall the assumption that forecast errors evolve linearly according to:

£(t) = M;(0,£)£(0)

As t — oo the fastest growing eigenmodes of Mf(O, t) will emerge and
determine the leading EOFs
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Forecast Error Variance as a Predictor of Forecast Skill
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Summary

Two dynamical regimes with different forecast error behaviors were identified:
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Summary

* An alternative approach for exploring properties of expected error covariances explored.

* Provides an explicit operator for the expected analysis error (A) and forecast error (F)
covariance matrices -> provides in-depth information about behavior and topology.

* Approach applied to dynamics of baroclinically unstable fronts — two distinct regimes
identified.

* Future experiments will include surface forcing — can be important for frontogenesis and
frontolysis.

* Fronts are ubiquitous in the ocean at all scales -> scaling analysis may shed light on how
the results presented here apply at other scales (such as the sub-mesoscale).

* While computationally demanding, the adjoint-based approach proposed here will
become more tractable for systems of larger dimension, especially in light of speed-ups of
4D-Var.

* Potential practical utility as an indicator of expected forecast error.
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