
• Apply thinning of observations 
to improve initial conditions 
for a near real time ocean 
forecasting system of the US 
West Coast.

Superobing radial velocity observations from a 
network of HF radars operated by NOAA

• The goal of 4D-Variational data assimilation is to calculate the best estimate of the
ocean circulation (analysis, 𝒙!, a.k.a. best linear unbiased estimate) using a numerical
model solution (background, 𝒙𝒃) and observations (𝒚) of the state of the ocean.

• This problem can be solved by minimizing a cost function that provides the best
estimate of the ocean given our set of observations. The solution takes the form of
an increment (𝜹𝒙!) that corrects the background state. The analysis then can be
expressed as: 𝒙! = 𝒙# + 𝜹𝒙!

• To calculate the increment, we need to invert the stabilized represented matrix
𝑯𝑩𝑯$ + 𝑹 , which represents the total error covariance matrix.

• Observations located very close to each other, and which have correlated errors,
introduce practical challenges to invert the stabilized represented matrix.

• By thinning observations, we seek to reduce the number of redundant observations,
and get closer to the 4d-var assumption of uncorrelated observation errors.
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Our analysis of the ocean circulation
was not significantly degraded after
reducing the amount of assimilated
observations.

Thinning techniques for remote sensing observations
in support of ocean data assimilation

Motivation: 4D-Var Findings

Future work

A numerical optimization problem

• Combine thinning of observations with other 
methods to optimize 4D-var performance, 
such as the use of mixed resolution or the 
implementation of saddle point algorithm

Subsampling regions of low variance for 
satellite data from operational SST (OSTIA)

• Normalize data and 
calculate global mean. 

• Define cutoff 
threshold.

• Calculate cutoff 
threshold variance.

• Recursively divide 
data into quadrants.

• Compare variance of 
quadrant with cutoff 
threshold variance.

Configuration
• Model: Regional Oceanic Modeling 

System (ROMS): 3D, free surface, terrain 
following coordinate numerical model 

• Domain: California Current System 
(CCS)

• Grid resolution ~10km – 42 vertical 
levels

• Atmospheric Conditions: atmospheric 
forecasting system

• Boundary Conditions: global scale 
ocean circulation model

• Initial Conditions: Assimilating data 
from the previous 4 days

• Observations: AVISO Sea Level 
Anomalies, OSTIA SST, AQUARIUS Sea 
Surface Salinity, HF Radar data, Argo 
gliders, buoys.    
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Analysis

• Innovation statistics: all experiments showed a good
agreement with the assumption of normally distributed
unbiased innovations, except during the upwelling season,
where the model is known to be biased.

• Background error and observation error consistency:
comparing an analysis of the increments with the a priori
defined background and observations errors we conclude
that the thinning did not significantly degrade the analysis.

• Properties of the total error covariance matrix: the
superobing of HFR velocities slightly improved the
conditioning of the matrix. Detection of regions of high
variance for the SST observations had the undesired effect
of increasing the condition number of the matrix to invert.

• Observation impacts: the thinning of radial velocities
drastically reduced the impact of these observations in the
analysis. On the other hand, thinning of SST had a good
effect on evening the impact of different types of
observations on the analysis.

Increment: 𝜹𝒙!
Innovation: 𝒅" = 𝒚 − 𝐻 𝒙"
Residual: 𝒅! = 𝒚 − 𝐻 𝒙" + 𝜹𝒙!
Background error covariance matrix: 𝑩
Observation error covariance matrix: 𝑹
Tangent linearization of the observation 
operator: 𝑯
Total error covariance matrix (stabilized 
representer matrix): 𝑯𝑩𝑯# + 𝑹

Notation

We tested two different thinning techniques 
for two observation sets:

• A simple technique creating 
superobservations for high frequency 
radar (HFR) radial velocity observations. 

• An intelligent data thinning algorithm 
based on R2005 applied to gridded 
satellite data of sea surface temperature 
(SST). The goal is to retain observations 
in regions of high variance and 
subsample regions of low variance.

Experiments

After an initial set of single cycle assimilation 
tests, we assimilated data for a 1-year 
period divided in 4-day cycles for three 
different data sets:

1) Using all the observations
2) Thinned HFR radial velocity observations
3) Thinned SST observations

• Each HF radar site is 
treated individually.

• For each grid point 
locate closest 
observation .

• Define pie-wedge 
area that depends on 
grid and distance to 
antenna.

• Average observations 
in that area to create 
superobservation.

• ROMS 4D-Var uses an iterative Gauss-Newton method based on 
an incremental approach to minimize the cost function.

• The solution consists of estimating an increment, which can be 
expressed as: 𝜹𝒙! = 𝑩𝑯# 𝑯𝑩𝑯# + 𝑹 $% 𝐲 − H 𝒙"

• The inversion of the stabilized representer matrix is usually 
solved using the equivalent matrix: 𝑹$%𝑯𝑩𝑯# + 𝑰 $%

• This inversion involves some practical challenges, such as:

o For remote sensing observations closely separated in space 
and time, 𝑯𝑩𝑯# can have columns very similar to each other, 
resulting in an ill-conditioned matrix.

o The evaluation of 𝑹$%is trivial if 𝑹 is diagonal, but this implies 
the unrealistic assumption of uncorrelated observation errors.

• Data thinning can ameliorate the challenges outlined above.

We performed a series of single cycle data
assimilation experiments to test and visualize
the thinning of different volumes of data.

The analysis of errors before and after the assimilation
(by means of the standard deviation of the increment
and the innovation) showed that thinning in general
increased the errors, but the calculated uncertainties
were within a tolerable margin for all cases.
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