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Variational Data Assimilation ML framework
- n. Get analysed state . .
r € R™: state / Objective
= M : R" — R"™ time propagator o , , ,
. = Construct a preconditioner x — Hy using DNN, which require no call to A, when
= H . R" — R™: observation operator . com(?aé? ) % e

"y € R™: observations = No access to A ! during the training

= G composes the forward model and the observation operator, to compare with the

. . Limited Memory Preconditioners [4]/Balancing Preconditioners
available observation

g:XCR" — X — R™ Let 5,5 € R §'= A,S
r — M(z) — (H o M)(x) = G(x) b Hinp(S, S = (I, — S(STS) 'S8T (1, — S'(ST5)~'8T) + §(STs) 18T (8)
= The cost function to optimize in order to get the analysis is We define the preconditioner as
Jip(z) = %Hg(f) — yllhr + %Hﬂ? — 2|5 (2) Hy : x — Hyvp(So(z), Ap(z)Sy(z)) (9)
and and H, ' available in a similar way
T = ar%érgin Jip(2) (3) Loss function, Estimation of Frobenius norm

If we constrain the norm of | Hy|| (e.g. by choosing Sy as eigenvectors)
Incremental 4DVar "minimize|| A, — H, '(z)||g” (10)

Outer and Inner loops: Minimization as a sequence of Linear Systems Sample n, random z; ~ N(0, I,,), and an estimation of the loss at a state z; is

2 _ —1 2
= Linearize J around z (Linear Inverse Problem): L0, ;) = n_zz |Azz; — Hy ()25 + regul(6) (11)
1 1 J=1
Jiner(2,02) = §HG$5$ +(G(x) —y) [ + 5\’51' + 2 — 2|5 (4) Possibility of online training:

X

* In a DA system, when A, is available, evaluate A, z;

= The optimal increment solves .
= Less storage required

(GIR'G,+ B Y ézx=-G.R'd, — B (z — 2" (5)
N——ee/ — ——
A, by

where A, Gauss-Newton Matrix <= Inverse posterior covariance Matrix Numerical Results
A, =GLR'G, + B! € R symmetric and spd (6)

—> Guess: x7

Lorenz96 system, n dimension, state is "spatially” distributed and periodic = CNN

Compute linearization G 1=t - ’
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In the Inner Loop " ,
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= A, is spd, so Conjugate Gradient can be used o W © @ & W B 2 5 D B

cond niter

= Convergence rate depends on the spectrum of A,
» Condition number: oa/omim = ||A||||A7Y]
= Clustering of eigenvalues at 1
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State Dependent Preconditioner
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Preconditioning

Instead of solving A, 0x = b, solve HA ,0x = Hb instead
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= [ symmetric, positive definite, cheap to compute and to apply D e w1 ow = w .35 0 o s 1 1._;  -
= H should be close to A
1 < k(HA,) < k(A,)

But "one-fits-all” preconditioner do not exist, most include information on spectrum of Conclusion and further work

A,

= We propose to use DNN in order to build a preconditioner for inverting the
State-dependent preconditioner Gauss-Newton matrix, which is state-dependent (or parametrized spd matrices in

' |
We propose to construct a mapping general)

r+— H(x) (/)

where H(x) is a preconditioner well-suited for the linear system A,0x = b,

N—"

= Use of different metric/regularization for the training of the DNN (Forstner distance...
= Directly looking for a low-rank / spectral decomposition of A, might be of interest
= Use this information for dimension reduction (with Bayesian inverse problem point of

Challenges view) [2]

= H(x) € R"™"is spd (ie n(n + 1)/2 "free” parameters)

= A, is not stored explicitly (only accessible as TL(z, z) = A,z) and high-dimensional References
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