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Variational Data Assimilation

x ∈ Rn: state

M : Rn→ Rn: time propagator

H : Rn→ Rm: observation operator

y ∈ Rm: observations

xt−1 xf
t

yt
Compare

yt and G(xt−1)

Get analysed state

t ← t + 1

HM

G composes the forward model and the observation operator, to compare with the

available observation

G : X ⊆ Rn −→ X −→ Rm

x 7−→ M(x) 7−→ (H ◦M)(x) = G(x) (1)

The cost function to optimize in order to get the analysis is

J4D(x) = 1
2
‖G(x)− y‖2

R−1 + 1
2
‖x− xb‖2

B−1 (2)

and

xa
t−1 = arg min

x∈X
J4D(x) (3)

Incremental 4DVar

Outer and Inner loops: Minimization as a sequence of Linear Systems

Linearize J around x (Linear Inverse Problem):

Jincr(x, δx) = 1
2
‖Gxδx + (G(x)− y)︸ ︷︷ ︸

−dx

‖2
R−1 + 1

2
‖δx + x− xb‖2

B−1 (4)

The optimal increment solves(
GT

x R−1Gx + B−1)︸ ︷︷ ︸
Ax

δx = −GT
x R−1dx −B−1 (x− xb

)︸ ︷︷ ︸
bx

(5)

where Ax Gauss-Newton Matrix ⇐⇒ Inverse posterior covariance Matrix

Ax = GT
x R−1Gx + B−1 ∈ Rn×n symmetric and spd (6)

Compute linearization Gxg

Guess: xg

Compute departures dxg

Solve iteratively Axgδx = bxg

xg ← xg + δx

Outer
Inner

In the Inner Loop

Ax is spd, so Conjugate Gradient can be used

Convergence rate depends on the spectrum of Ax

Condition number: σmax/σmin = ‖A‖‖A−1‖
Clustering of eigenvalues at 1

State Dependent Preconditioner

Preconditioning

Instead of solving Axδx = b, solve HAxδx = Hb instead

H symmetric, positive definite, cheap to compute and to apply

H should be close to A−1
x

1 ≤ κ(HAx) ≤ κ(Ax)

But ”one-fits-all” preconditioner do not exist, most include information on spectrum of

Ax.

State-dependent preconditioner

We propose to construct a mapping

x 7−→ H(x) (7)

where H(x) is a preconditioner well-suited for the linear system Axδx = bx

Challenges

H(x) ∈ Rn×n is spd (ie n(n + 1)/2 ”free” parameters)

Ax is not stored explicitly (only accessible as TL(x, z) = Axz) and high-dimensional

Independence with respect to the observations (thus to bx)

H(x) should contain spectral information of Ax

ML framework

Objective

Construct a preconditioner x 7→ Hθ using DNN, which require no call to Ax when

in use

No access to A−1
x during the training

Limited Memory Preconditioners [4]/Balancing Preconditioners

Let S, S ′ ∈ Rn×r, S ′ = AxS

HLMP(S, S ′) = (In − S(STS ′)−1S ′T )(In − S ′(STS ′)−1ST ) + S(STS ′)−1ST (8)

We define the preconditioner as

Hθ : x 7→ HLMP(Sθ(x), Ãθ(x)Sθ(x)) (9)

and H−1
θ available in a similar way

Loss function, Estimation of Frobenius norm

If we constrain the norm of ‖Hθ‖ (e.g. by choosing Sθ as eigenvectors)

”minimize‖Ax −H−1
θ (x)‖2

F” (10)

Sample nz random zj ∼ N (0, In), and an estimation of the loss at a state xi is

L̂(θ, xi) = 1
nz

nz∑
j=1
‖Axi

zj −H−1
θ (xi)zj‖2

2 + regul(θ) (11)

Possibility of online training:

In a DA system, when Ax is available, evaluate Axzj

Less storage required

Numerical Results

Lorenz96 system, n dimension, state is ”spatially” distributed and periodic⇒ CNN

Conclusion and furtherwork

We propose to use DNN in order to build a preconditioner for inverting the

Gauss-Newton matrix, which is state-dependent (or parametrized spd matrices in

general)

Use of different metric/regularization for the training of the DNN (Förstner distance...)

Directly looking for a low-rank / spectral decomposition of Ax might be of interest

Use this information for dimension reduction (with Bayesian inverse problem point of

view) [2]
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