

Coupled assimilation

of satellite temperature and chlorophyll observations for improved ecosystem predictions in the Baltic Sea

Yuchen Sun, Sophie Vliegen, Lars Nerger

Alfred Wegener Institute, Bremerhaven, Germany

Model: NEMO-NORDIC

Operational configuration of CMEMS Baltic Monitoring and Forecasting Center (BAL-MFC)

- Model setup
 - NEMO-NORDIC
 - 1 nm resolution (~1.8km)
 - 56 layers
 - Time step 90 sec
 - Open boundaries in North Sea and English Channel
 - BCs from separate model for North Atlantic

- Original development for Baltic Sea (Neumann, 2000)
- based on Nitrogen
- Chlorophyll is diagnostic quantity
- Recently BSH added module for carbonate system

Parallel

Framework

Data Assimilation

PDAF – Parallel Data Assimilation Framework

A unified tool for interdisciplinary data assimilation ...

- provide support for parallel ensemble forecasts
- provide assimilation methods (solvers) fully-implemented & parallelized
- provide tools for observation handling and for diagnostics
- easily useable with (probably) any numerical model
- a program library (PDAF-core) plus additional functions
- run from notebooks to supercomputers (Fortran, MPI & OpenMP)
- ensure separation of concerns (model DA method observations covariances)

Open source: Code, documentation, and tutorial available at

https://pdaf.awi.de

github.com/PDAF

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118

State

- 5 physics variables
- 16 ERGOM prognostic variables + 4 diagnostic variables
- State dimension: $704 \cdot 10^6$ (at analysis $153 \cdot 10^6$)

DA setup

- Kalman filter: LESTKF
- ensemble size: 30
- weakly coupled DA
- direct updates of model fields (no IAU)
- Physics: only 3D temperature updated (multivariate updates result in unrealistic salinity)
- ERGOM: update 13 prognostic + 4 diagnostic variables (no update of LDON, DIC, ALK)

Compute requirements:

- Each NEMO-ERGOM task: 186 cores (+6 for XIOS)
- Run time: ~45 minutes to simulate 24h (1 model month per simulation day)

5

Observations

Sea Surface Temperature

- CMEMS Level 4 'reprocessed' data
- resolution 0.02°
- available daily
- observation error for DA: 0.8 °C (provided error fields not fully realistic)

Chlorophyll

- Level 3 data from CMEMS (multi-satellite multi-year)
- separate data products for North Sea and Baltic Sea
- resolution 1 km
- available daily
- observation error: relative error of 0.3

DA: Effect on SST

Ensemble run from Jan. 1, 2015

- ensemble perturbations in physics from EOFs (2nd-order exact sampling)
- ensemble central state from forecast
- perturb 15 process parameters of ERGOM

Data assimilation from Feb. 1, 2015

- Strong reduction of RMSe in SST
- RMSe increases in April
 - → problem in level-4 SST data
- RMSe more consistent with L3 data

14-day forecasts (green)

 Slow error increase in March; faster in May

DA: Effect on Chlorophyll

Daily assimilation from Feb. 1, 2015

- RMSe reduced
- Strong fluctuations in February and March (varying data coverage)

- 14-day forecasts (green)
- Larger error increase than for SST (less forecast skill)

- Compare 2 cases:
 - Weakly coupled DA of SST + CHL satellite data
 - Assimilation of only CHL data
- Significant differences only during April: lower errors if temperature is corrected by SST-DA

Chlorophyll: Log10-RMSe

Performed 14-day ensemble forecasts initialized from DA analysis

Error reduction in 24-h forecast: 33 %

10

- 8-day forecast: 20 %
- 14-day forecast: 5 %

Surface chlorophyll: model - observations

Performed 14-day ensemble forecasts initialized from DA analysis

- Error reduction in 24-h forecast: 48 %
 - 8-day forecast: 43 %
 - 14-day forecast: 35 %

Surface temperature: model - observations

Performed 14-day ensemble forecasts initialized from DA analysis

- Error reduction in 24-h forecast: 48 %
 - 8-day forecast: 43 %
 - 14-day forecast: 35 %

Surface temperature: model - observations

Profiles at station Arkona Basin – March 1 - 14

Free run on April 1

24h forecast on April 1

Trophic efficiency: zooplankton / phytoplankton

On April 1 only significant zooplankton in the transition zone to North Sea

DA increases the ratio

15

Effect of DA on Ecosystem Indicators

Ratio of diatoms to total phytoplankton

DA reduces relative abundance of diatoms in several regions

Effect of DA on Ecosystem Indicators

pH Significant variations in

the Baltic Sea.

The DA lowers pH slightly in the Baltic proper and Bothnian Sea

Summary – NEMO-PDAF

PDAF Parallel Data Assimilation Framework

- Coupled assimilation of satellite SST and chlorophyll
- Improvements in temperature and chlorophyll in analysis and 14-day forecasts
- Combined SST+CHL assimilation improves result over CHL-only assimilation
- Next steps
 - Validation with in situ data
 - re-running with L3 SST data
 - Strongly coupled assimilation

- Visible rectangles visible beginning of April
- Jumps in temperature when data becomes available in previously data-void regions
- Not reflected in error maps of data product
- → Rerun with level 3 data

L4 SST on April 6, 2015

