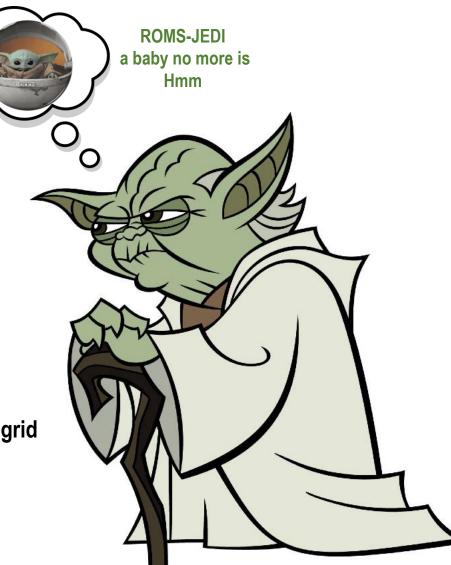


Introducing the ROMS-JEDI Interface

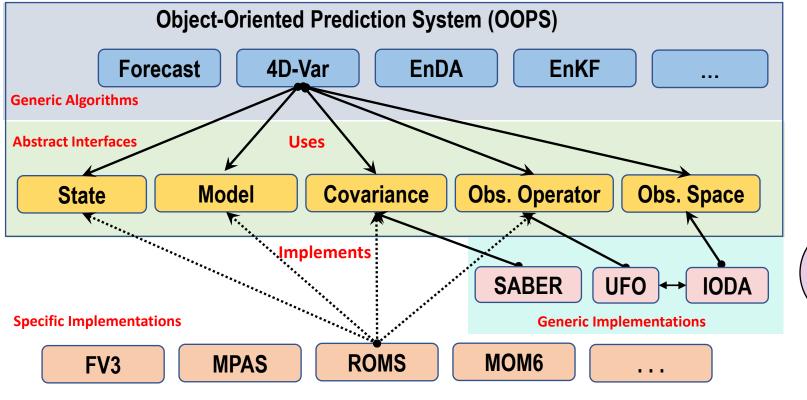
Hernan G. Arango¹, Andrew M. Moore² and John L Wilkin¹


¹Rutgers University, DMCS, New Brunswick, NJ, USA ²Univesity of California, Santa Cruz, CA,USA arango@marine.rutgers.edu

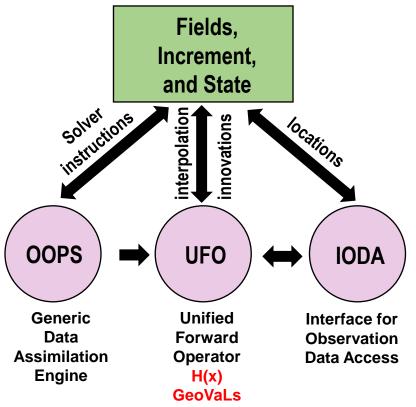
Consiglio Nazionale delle Ricerche **Ocean Predict DA-TT Meeting,**

Rome, Italy

May10, 2023



- **BUMP** B matrix on an Unstructured Mesh Package
- **EWOK** Experiments and Workflows Orchestration Kit
- **FGAT** First Guess at Appropriate Time
- **IODA** Interface for Observation Data Access
- **JCSDA** Joint Center for Satellite Data Assimilation
- **JEDI** Joint Effort for Data Assimilation Integration
- **LETKF** Local Ensemble Transform Kalman Filter
- **NICAS** Normalized Interpolated Convolution from an Adaptive Subgrid
- **OOPS** Object-Oriented Prediction System
- **R2D2** Research Repository for Data and Diagnostics
- **SABER** System-Agnostic Background Error Representation
- **UFO** Unified Forward Operator
- **VADER** The VAriable DErivation Repository
- **3D-Var 3-Dimensional Variational Data Assimilation**
- 4D-Var 4-Dimensional variational Data Assimilation



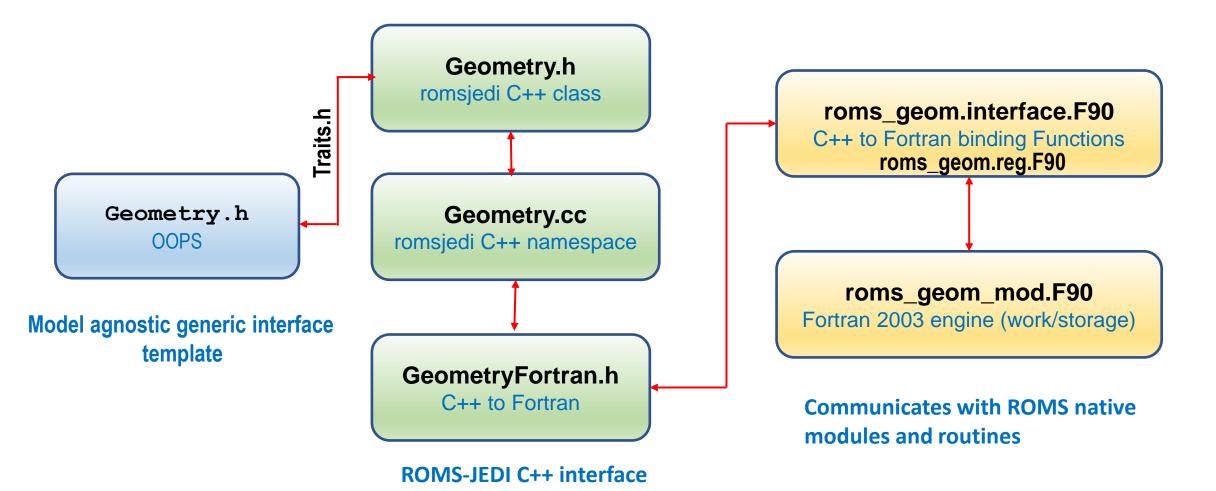
ROMS-JEDI Integration

JEDI Motto and Catchphrase: Separation of Concerns is the most crucial part of its design and implementation!

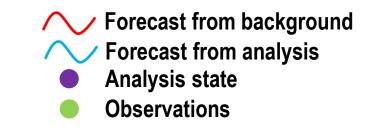
JEDI Layer (model agnostic)

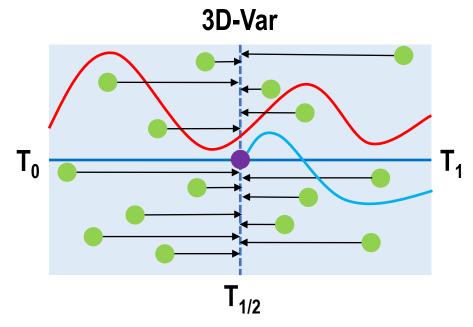
Modern, abstract object-oriented programming data assimilation framework written in C++, because of its robust template capabilities. OOPS was designed initially at ECMWF, now expanded and maintained by JCSDA.

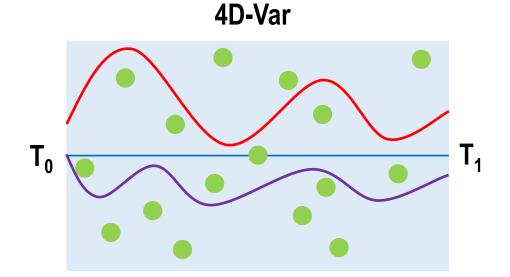
ROMS-JEDI Interface Classes


Mostly any modern forecast model can be connected to the JEDI framework, provided that the following predefined, abstract C++/Fortran Classes or building blocks are coded:

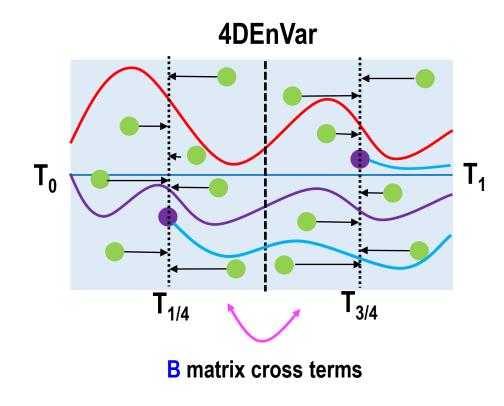
CLASS	DESCRIPTION
ErrorCovariance	Background error covariance and modeling (SABER: BUMP/NICAS)
Field/Fields	Elemental operators to manipulate a field or a set of fields to the model state/increment vector and metadata
Geometry	Application grid definition, including coordinates, metrics, parallel decomposition, and operators
Geometrylterator	Methods to set/get state fields over specified grid points in LETKF applications
Increment	Procedures to operate on the increment vector that extends/inherits from the Fields class
LinearModel	Initializes, run, and finalizes the Tangent Linear and Adjoint model dynamical/numerical kernels
LinearVariableChange	Tangent/adjoint increment vector variables transformation from one field to another
Localization	Model Ensemble Localization (SABER: BUMP/NICAS)
Model	Initializes, run, and finalizes the Nonlinear model dynamical/numerical kernel
State	Procedures to operate on the state vector that extends/inherits from the Fields class
Trajectory	Methods to process the nonlinear trajectory that linearizes the tangent linear and adjoint models
VariableChange	Nonlinear state vector variables transformation from one field to another


C++ to Fortran to C++ Binding Sequence


Interoperability mechanism for the Geometry Class that allows Fortran to invoke C++ functions and vice versa C++ to invoke Fortran procedures



Variational Data Assimilation Cost Functions:


- 3D-Var (primal and dual)
- 3DEnVar (primal and dual)
- Hybrid 3D-Var (primal and dual)
- Identity Tangent Linear and Adjoint Operators

- 3D-Var FGAT (primal and dual)
- 3DEnVar FGAT (primal and dual)
- Hybrid 3D-Var FGAT (primal and dual)
- 4D-Var (primal and dual; strong/weak)

Variational Data Assimilation Cost Functions:

Forecast from background
Forecast from analysis
Analysis state
Observations

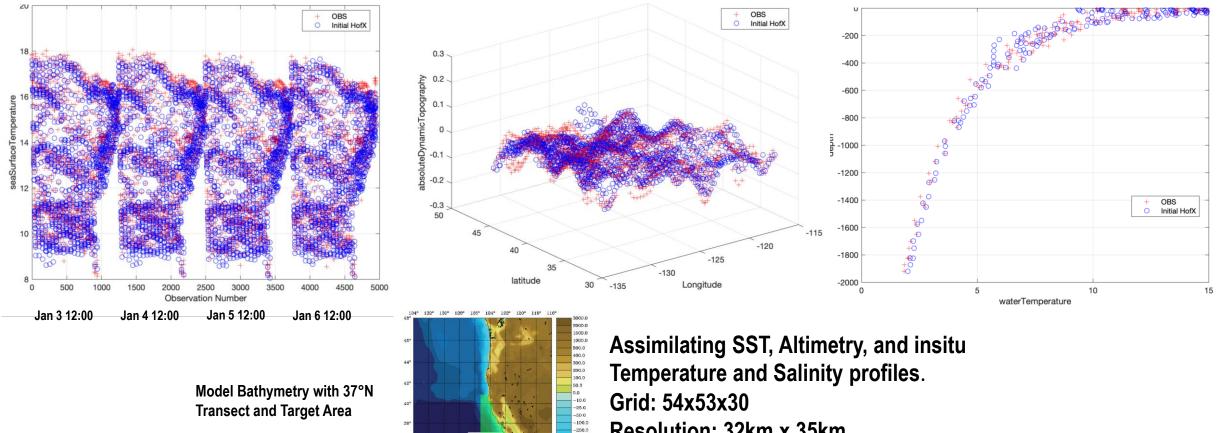
- 4DEnVar (dual; strong/weak)
- Hybrid 4D-Var (dual; strong/weak)

In hybrid DA, the background error covariance is a linear combination of static (B_s) and flow-dependent ensemble (B_e) covariances:

 $B_h = \alpha B_s + \beta B_e$

The α and β coefficients are appropriately chosen to build the hybrid background error covariance

OOPS Variational Data Assimilation Minimizers:


	Minimizer	Description
JED	DRGMRESR	Derber-Rosati GMRESR solver
Dual	DRIPCG	Derber-Rosati Inexact-Preconditioned Conjugate Gradient solver
	DRPCG	Derber-Rosati Preconditioned Conjugate Gradient solver
	DRPFOM	Derber-Rosati Preconditioned Full Orthogonal Method (FOM) solver
	DRPLanczos	Derber-Rosati Preconditioned Lanczos solver
	FGMRES	Flexible GMRES solver, Saad and Schultz (1986), Saad (1993)
	GMRESR	GMRESR solver, Van der Vorst and Vuik (1994)
	IPCG	Inexact-Preconditioned Conjugate Gradient, Golub and Ye (1999, 2000)
	LBGMRESR	Left B Preconditioned GMRESR solver
	MINRES	MINRES solver, Paige and Saunders (1975)
	PCG	Preconditioned Conjugate Gradient solver
	PLanczos	Preconditioned Lanczos solver
	RPCG	Restricted Preconditioned Conjugate Gradient, Gratton and Tshimanga (2009)
	RPLanczos	Augmented Restricted Lanczos method, Gürol (2013)
	SaddlePoint	Time-parallelized Saddle-Point formulation, Fisher and Gürol (2017)

UFO Observation Interpolation, H(X): WC13 Application

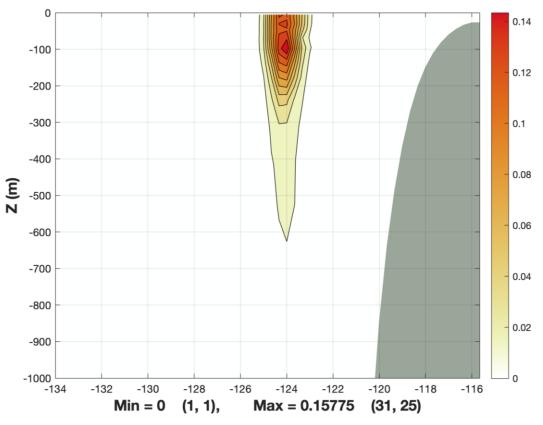
Absolute Dynamic Topography (m)

In situ Temperature (C)

-500.0 -1000.0 1500.0

2000.0 2500.0 -3000.0 3500.0 4000.0

Resolution: 32km x 35km Cycle: Jan 3-7, 2004

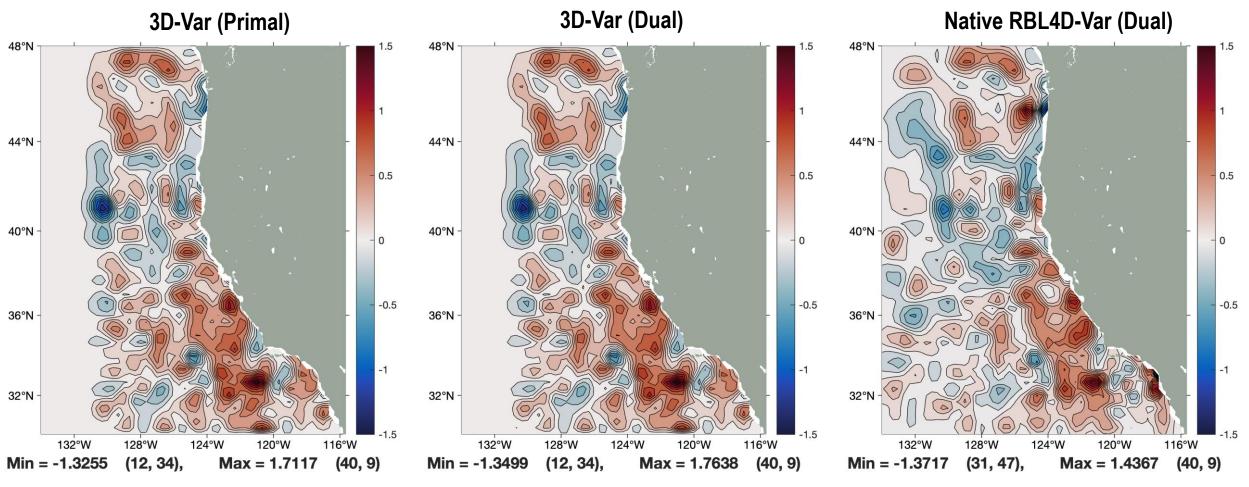


SABER (BUMP/NICAS) Error Covariance B Modeling

Single observation Dirac Impulse scaled by the standard deviation

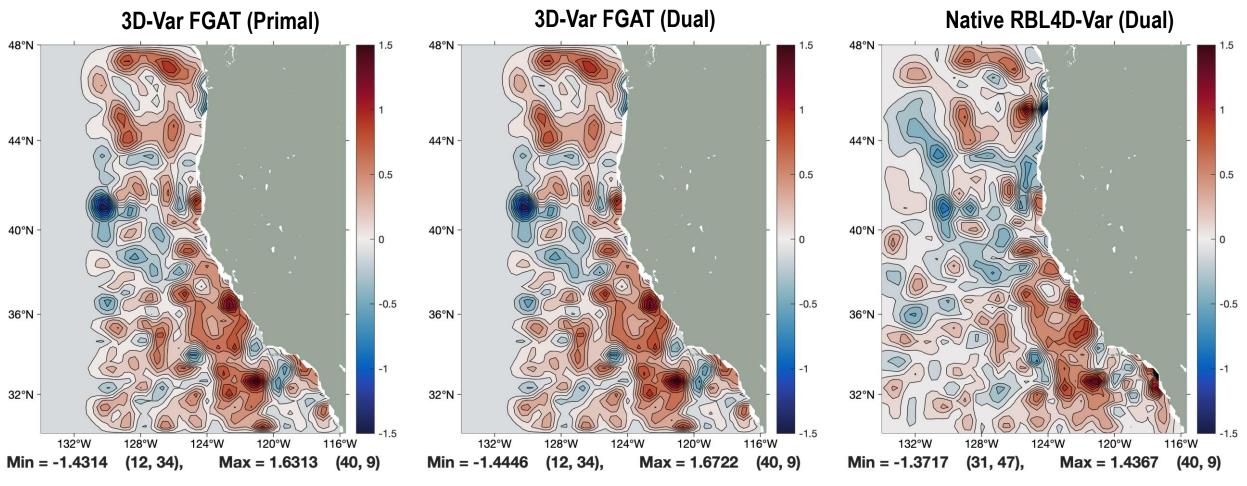
48°N 0.16 0.14 44°N 0.12 0.1 40°N 0.08 0.06 36°N 0.04 0.02 32°N 0 132°W 128[°]W 124°W 120°W 116°W Min = 0 (1, 1), Max = 0.17786(31, 11)

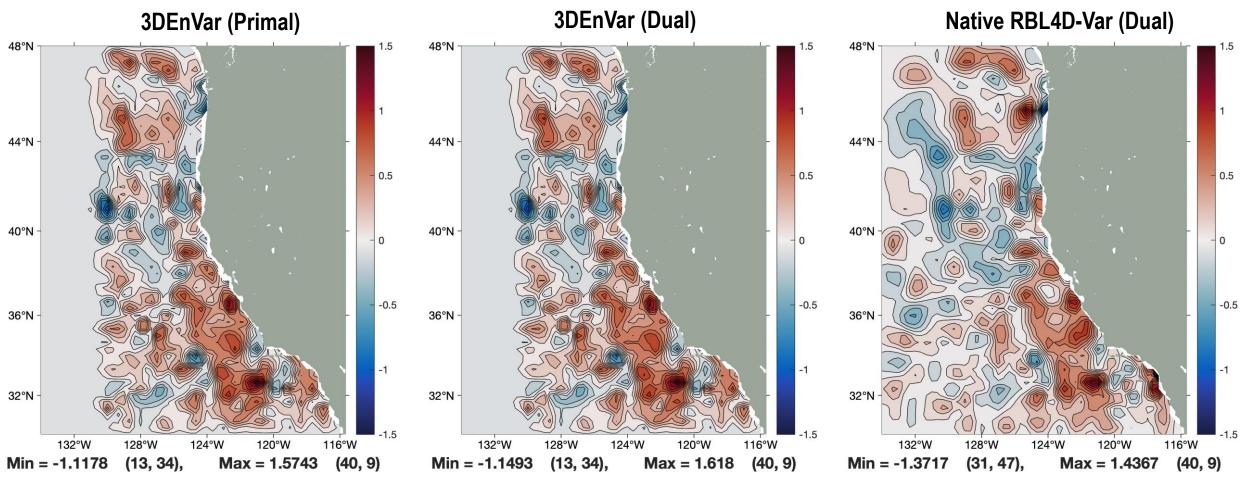
Surface Temperature

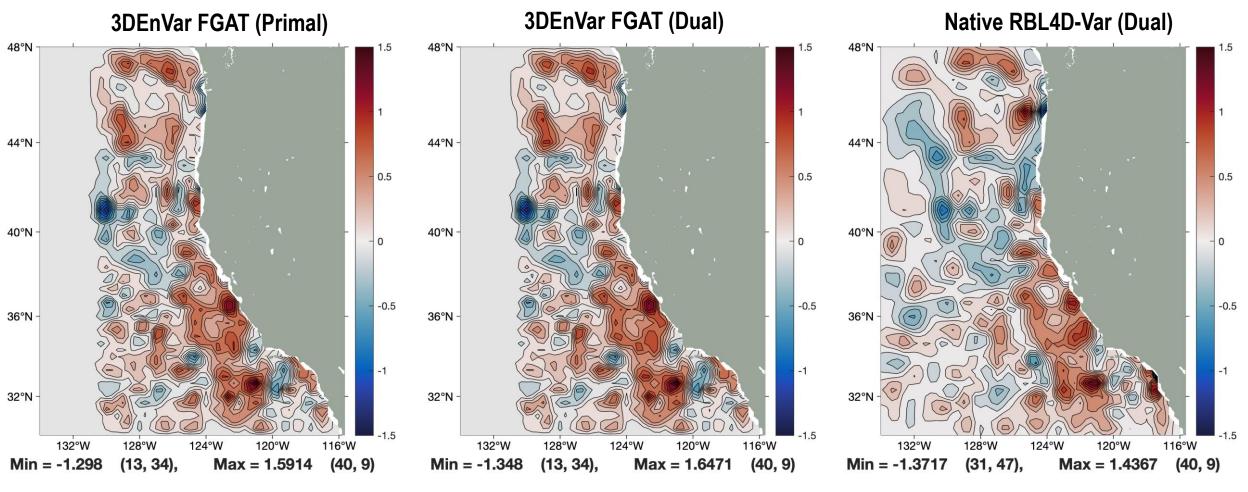


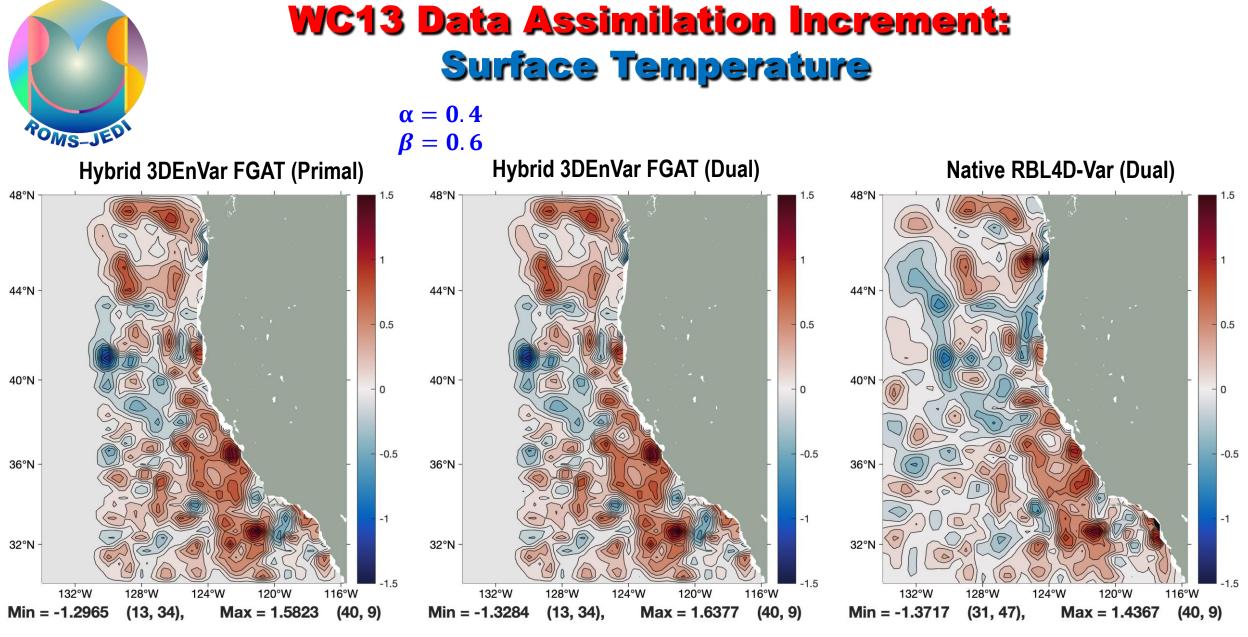
Temperature

160 km Horizontal Correlation


150 m Vertical Correlation


ROMS TLM and ADM are Identity Operators

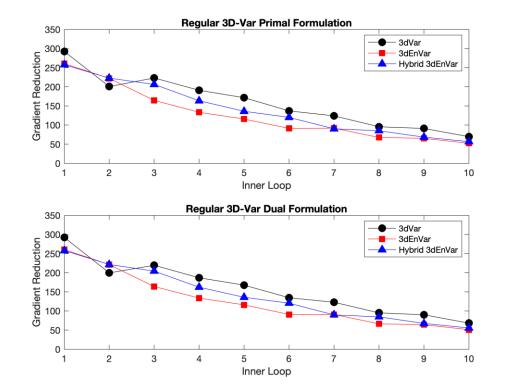

ROMS TLM and ADM are Identity Operators

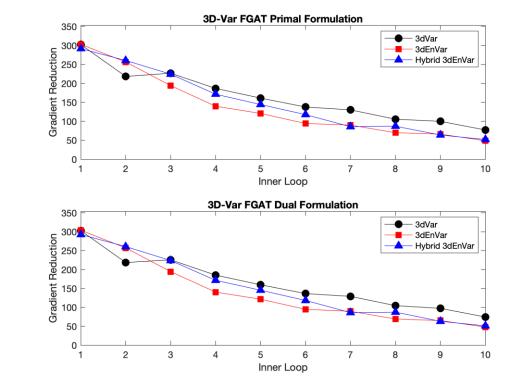

ROMS TLM and ADM are Identity Operators Ensemble Size = 10

Uses ROMS TLM and ADM kernels

ROMS TLM and ADM are Identity Operators Ensemble Size = 10

ROMS TLM and ADM are Identity Operators Ensemble Size = 10

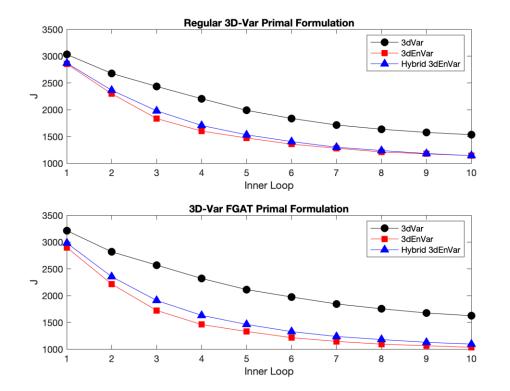

WC13 Data Assimilation Increment: Surface Temperature LETKF / Hybrid 3DEnVar FGAT MS. Native RBL4D-Var (Dual) Penny (2014; MWR) LETKF 48°N 48°N 48°N 1.5 44°N 44°N 44°N 0.5 0.5 0.5 40°N 40°N 40°N 0 -0.5 -0.5 -0.5 36°N 36°N 36°N -1 32°N -32°N 32°N --1.5 -1.5 -1.5 124°W 120°W 132°W 128°W 132°W 132°W 124°W 128°W 116°W 124°W 120°W 116°W 128°W 120°W 116°W (12, 34), (31, 47), Min = -1.8148 (10, 48), Max = 1.2043 (40, 9) lin = -0.69029 Max = 0.83542(35, 20) Min = -1.3717 Max = 1.4367 (40, 9) Identity TLM/ADM No Inflation Uses ROMS TLM and ADM kernels **Ensemble Size = 10 Ensemble Size = 10**

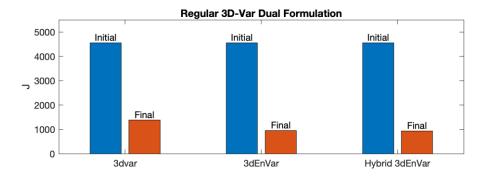


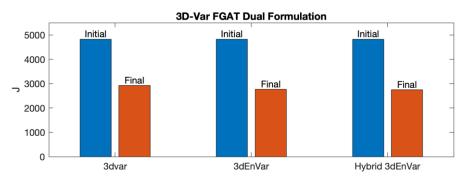
3D-Var Convergence: Gradient Reduction

Regular (Primal/Dual)

FGAT (Primal/Dual)






3D-Var Convergence: Nonlinear Cost Function

Primal Formulation

Dual Formulation

Implementing ROMS DA in JEDI Summary

- Repositories created for ROMS-JEDI development within JCSDA:
 - git clone https://github.com/JCSDA-internal/roms_src.git
 - git clone https://github.com/JCSDA-internal/roms-jedi.git

(latest **ROMS** source code) (ongoing **ROMS-JEDI** interface)

- ROMS-WC13 test case (~35-km U.S. West Coast) is configured as a realistic ocean application for interface Unit Tests.
- All the elemental C++ and Fortran-2003 building blocks or object Classes (OOPS, SABER, UFO, and VADER) for the ROMS-JEDI interface have been coded and tested with WC13. Currently, there are 42 Unit Tests.
- The **ROMS-JEDI** interface is up-to-date with the evolving changes in the **JEDI** building blocks.
- All the DA observation operators H(x) and H^T(x) use the generic UFO horizontal and vertical interpolation methods. ROMS depths are negative with levelsAreTopDown()=false. That is bottom (k=1) and top (k=N).
- The ROMS-JEDI Background Error Covariance B (static, ensemble, and hybrid) is modeled with BUMP/NICAS.
- We started testing and evaluating various variational data assimilation algorithms in JEDI for 3D-Var and will
 progress to 4D-Var using the primal and dual formulation with different minimization solvers.
- The **ROMS-JEDI** interphase was challenging and time-consuming to build and test, but it is incredibly trivial and easy to run once the user has all the observations stored in IODA NetCDF-4 files.

ROMS-JEDI 3D-Var FGAT Configuration: 3dvar_fgat_primal.yaml

forecast length: &ForecastLength PT96H model timestep: &TimeStep PT1800S initial date: &date 2004-01-03T00:00:00Z

roms analysis: &roms analysis [ssh, uocn, vocn, tocn, socn] roms state: &roms state [ssh, uocn, vocn, tocn, socn, zocn r]

cost function cost type: 4D-Var window begin: *date window length: *ForecastLength analysis variables: *roms analysis

geometry: &roms geom1 project dir: Data/wc13 roms stdinp: roms wc13 20040103.in fields metadata: Data/fields metadata.yaml ng: 1

model: name: ROMS

model variables: *roms state simulation length: *ForecastLength tstep: *TimeStep

background:

fields dir: jediroms wc13/Data/ fields filename: wc13 roms ini 20040103.nc fields record: 1 state variables: *roms state date: *date

background error:

covariance model: SABER saber central block:

saber block name: BUMP NICAS read:

drivers:

multivariate strategy: univariate

read local nicas: true

grids:

- model:

variables: - ssh

io:

files prefix: Data/bump/wc13 bump2d

- model:

variables:

- tocn - soon

io:

files prefix: Data/bump/wc13 bump3d

saber outer blocks:

- saber block name: StdDev

read:

model file:

date: *date

fields dir: Data/wc13 fields filename: wc13 roms std i.nc fields record: 1

WC13 has a 30 minutes timestep # initial DA window

96 hours (4 days) or smaller interval

OOPS cost function type

using 4D-Var because FGAT

4-day DA cycle

ROMS application geometry

ROMS nested grid number # ROMS nonlinear model object

ROMS state background / first guess

initial fields for 2004-01-03T00:00:00Z

background error covariance modeling

static background error covariance

2D-fields correlations

sea surface height

3D fields correlations

waterTemperature # salinity

ROMS state vector standard deviation

same as ROMS native RBL4D-Var state variables: *roms analysis

observations: # Observations to assimilate observers: - obs space: name: InsituTemperature obsdatain: engine: type: H5File obsfile: Data/obs/wc13 temp 20040103.nc4 obsdataout: engine: type: H5File obsfile: Data/3dvar/fgat/primal/wc13 temp 3dvar fgat.nc4 simulated variables: [waterTemperature] obs operator: name: VertInterp vertical coordinate: model level depth at cell center observation vertical coordinate: depth # negative, levelsAreTopDown()=false, (bottom k=1) observation alias file: testinput/obsop name map.yaml obs error: covariance model: diagonal

variational:

.

minimizer: algorithm: DRPLanczos iterations: - ninner: 10 gradient norm reduction: 1.0e-10 geometry: *roms geom1 linear model: name: Identity tstep: *TimeStep increment variables: *roms analysis variable change: Identity diagnostics: departures: ombg online diagnostics: write increment: true increment: single record: true data dir: Data/3dvar/fgat/primal prefix: wc13 roms exp: 3dvar type: inc date: *date

final: diagnostics: departures: oman

output:

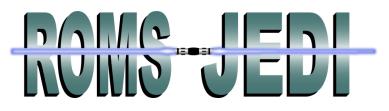
file policy: PT98H frequency: &frequency PT2H data frequency: *frequency data dir: Data/3dvar/fgat/primal prefix: wc13 roms exp: 3dvar type: nlm date: *date

And so on for InsituSalinity, SST, and AD

minimization solver (Derber-Rosati Precond. Lanczos)

Primal Formulation # each item defines an outer loop # number of inner loops

inner loops geometry object (can be coarser)


Identity TLM/ADM

Written into output IODA files # observation minus background: y - H(Xb)

DA increment output file

Written into output IODA files # observation minus analysis: y - H(Xa)

single output file with 49 records # write output NLM fields every 2 hours

Acknowledgments:

- Many thanks to JEDI developers at JCSDA for developing such a fantastic generic Data Assimilation Framework.
- Many thanks to original OOPS developers at ECMWF.
- We thank the following colleagues for their kind help and for answering our software questions during the ROMS-JEDI interface development:
 - Anna Shlyaeva (JCSDA)
 - Benjamin Ménétrier
 - Guillaume Vernieres (NOAA)
 - Travis Sluka (JCSDA)
 - Yannick Tremolet (JCSDA)
- I'm grateful to Marcin Chrust (ECMWF) for explaining how OOPS works.
- Finally, We are grateful to NOAA for its continued support.

