

Assimilation of high-sampling rate altimetry for sea level studies in the Nordic Seas and Arctic Ocean

Storto A, Bonaduce A, Cipollone A, Raj R, Yang C, Johannessen J

1 CNR-ISMAR, Rome, Italy 2 NERSC, Bergen, Norway, 3 CMCC Bologna, Italy

Rome 9-11/MAY/2023

Regional ocean models

Eddy kinetic energy

Introduction

NEMO 4.0.7 A family of configurations: CREG025 CREG12 CREG36

Forced by ERA5/GLORYS12 laterally JRA55-do discharge

Data assimilation enabled:

Variational DA in the ocean

Applications

Interannual variability in the NA Atlantification of Arctic Stochastic physics developments DA developments (e.g. new obs types) **Goal**: To understand the relative impact of eddy parametrization, stochastic physics, data assimilation and horizontal resolution on the mesoscale activity representation

Comparison

Stochastic physics

Increasing resolution configuration help assessing the subgrid variability in ~coarse models

<u>Below</u>: subgrid (submesoscale) variability of the 1/4° assessed using the 1/36° configuration

Stochastic coarse-grained high-resolution bulk formulas:

Stochastically modulate air-sea fluxes through computing their subgrid variations

Motivation for altimetry at 5Hz

- The intrinsic challenge of high latitudes:
 - Much less observed (especially subsurface)
 - Much shorter Rossby Radius (even ~1/10° models do not resolve eddies)
 - Meridional transports are crucial to understand the global changes (e.g. sea-ice decline, etc.)
- It is crucial to optimize the current observing network
- Important to investigate networks capable to sense partly ice-covered areas, and altimetry in particular as it contributes to mesocale characterization

(Hallberg, 2013, OM)

Motivation for altimetry at 5Hz

- The intrinsic challenge of high latitudes:
 - Much less observed (especially subsurface)
 - Much shorter Rossby Radius (even ~1/10° models do not resolve eddies)
 - Meridional transports are crucial to understand the global changes (e.g. sea-ice decline, etc.)
- It is crucial to optimize the current observing network
- Important to investigate networks capable to sense partly ice-covered areas, and altimetry in particular as it contributes to mesocale characterization

 1^{-1} $1/2^{-1}$ $1/3^{-1}$ $1/3^{-1}$ $1/3^{-1}$ $1/3^{-1}$ $1/12^{-1}$ $1/12^{-1}$ $1/23^{-1}$ $1/30^{-1}$ Mercator Grid Resolution Required to Resolve Baroclinic Deformation Radius with 2 Δx

(Hallberg, 2013, OM)

Altimetry dataset

Cryosat-2, Saral/AltiKa and Sentinel-3A reprocessed in order to provide:

- 5Hz dataset (against 1Hz conventional)
- use of new re-tracking for retrievals over leads
- now disseminated within Copernicus (but not updated

(Prandi et al., 2021)

Altimetry dataset

Cryosat-2, Saral/AltiKa and Sentinel-3A reprocessed in order to provide:

- 5Hz dataset (against 1Hz conventional)
- use of new re-tracking for retrievals over leads
- now disseminated within Copernicus (but not updated

Variance of the sea-level anomaly field (cm²) obtained considering conventional (left) and enhanced altimetry satellite altimetry maps over the period 2016-2020.

(Prandi et al., 2021)

Altimetry dataset

- GLOBAL Lofoten ARCTIC - Lofoten 0 0 200 200 400 400 300 600 800 800 1000 1000 ACE = 95 CE = 80 CE = 128ACE = 152 10 5 10 Ó 5 [degC] [degC]
- Argo profiling floats trapped by eddies in the Lofoten Basin.
 - In-situ temperature profiles collocated with mesoscale features as a function of eddy size, lifetime (> 1 month) and polarity: cyclonic (CE; blue lines) and anticyclonic (ACE red lines) features.

Experiments

A01: Only in-situ data assimilation

A02: In-situ + 5Hz altimetry assimilation

A03: In-situ + conventional altimetry (1Hz) assimilation

(A02b: as A02 but with representativeness error augmented)
example: σ√5 for 20 Hz satellite,
e.g. S3-A)

Experimental Set-up

OGCM NEMO (4.07), TKE vertical mixing, SI³

Data Assimilation Scheme

- 3DVAR
- Multivariate EOFs
- Obs. Operator SLA based on dynamic height

Forcing ERA5-hourly (SRF) GLORYS12 (LBC)

Relative EKE

- **REKE** (%) explained by eddies > 14 days lifetime considering **0–200m** depth range
- The impact of enhanced altimetry data shows off at the high latitudes: **energetic mesoscale features** in the Arctic (Nansen basin)
- A02b exhibits no significant difference w.r.t. A02

REKE=fraction of EKE occurring in presence of eddies, i.e. EKE due to eddies in compact form

0.1

Skill score metrics

RMSE Temperature (JJA) Region Arctic

RMSE Temperature (SON) Region Arctic

> The skill of the experiments is comparable
> Improvements can be observed at depth > 500 m

during JJA

A01

A02

1.4

□ A03

1.0

Mean differences (A02-A03)

Sea surface temperature difference Exp2 - Exp1 (2017-2019)

Net Air-Sea Heat Flux Exp2 - Exp1 (2017-2019)

Mixed Layer Depth Exp2 - Exp1 (2017-2019)

Sea-Ice Concentration Exp2 - Exp1 (2017-2019)

> SST Damping Heat Flux Exp2 - Exp1 (2017-2019)

Meridional Transports

- Significant increase of MHT at the high latitudes
- The experiment performed ingesting enhanced altimetry shows the largest increase in all the seasons

SSH variability

- Percentage of **variance of SSH** explained by eddies as a function of lifetime (>1 month)
- Mesoscale features show their signature in the SSH field in Nordic Seas and Arctic

Conclusions

- The challenges in the Arctic observing networks call for optimizing the assimilation of the current altimetry missions
- 5Hz altimetry offers an enhanced dataset at higher spatial resolution and capable of sensing sea ice leads
- Its ingestion in an operational-like forecasting system provides some improvements:
 - rather neutral impact on skill scores
 - enhanced mesoscale activities locally (Lofoten Basin, Nansin basin)
 - enhanced meridional heat transports around for ϕ >70°N