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.Accountin'g for spatial scale dependency in variational DA

¢ Minimize separate cost functions for “large” and “small” scale
information (Li et al. 2015)

= How to separate scales is not obvious; complicates the problem of specifying R

¢ Multiple scale B model (Met Office; Mirouze et al. 2016) (1)

= Block-diagonal (uncorrelated) with respect to the separated scales

¢ Use a hierarchy of nested grids (Srinivasan et al. 2022)
= B length-scale controlled by the grid resolution

¢ Scale-dependent localization (SDL) of an ensemble covariance matrix
(Buehner & Shlyaeva 2015) (2)

= Requires an ensemble; expensive

Here we describe an approach that extends (1) and uses features of (2)
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® Scale-dependent ensemble perturbations

®
@

¢ In NEMOVAR, we use an ensemble to define the error covariances of
transformed (assumed approximately uncorrelated) background variables.

¢ We first remove the balanced component from the ensemble perturbation
matrix:

~ B 1 X )
X =K;'X = \/N—l(ei ‘E}Ve)

# Next, use a sequence of filters F'; (here, diffusion) with different length
scales D;, where D; > D,_1 , to construct an augmented set of
perturbations (from small scale to large scale):

XF=mX  i=1,...,N, with F; =1
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° Scale-dependent ensemble perturbations

¢ Rearrange the filtered perturbations into overlapping ranges of scales
from large (small i) to small (large i):

X; = X
A~ /\F S .
Xi = XN—i+1 —Xi—1, 1=2,...,N;s
¢ The original perturbation is recovered from the telescoping sum
Ns
X =) X;
i=1
¢ The sample error covariance matrix can be written as

B~ . AAT o S S A-AT-
= XX° = § :§ :X%XJ
i=1 j=1
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‘Seale-dependent implicit diffusion filtering on the sphere

Example with two separated scales
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Filtering kernel:

1 oo
10) = —5 D fn Pa(cost)
n=0

Spectral coefficients:

) —M
fn=+vV2n+1 (1 + %n(n—l— 1))

Filtering length-scale:
D;, = 2L;vV2M — 2

where M = 10 in the example

(Weaver and Mirouze 2013)
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° Scale-dependent covariance modelling

00 With scale—dependent localization (SDL), we define
N. N, N,

Beos Z Z Lijo XiXj = 3733 AVLiA"

1=17=1 n=1:=1j5=1

¢ Here, we define a scale- dependent covariance model (SDM) as

SDM — ZZZ C@JZ

1=1 9=1
¢ C;; must be symmetric, positive semi-definite. We define it as

T
C?;j = Uf,;Uj
¢ We use the “square-root” of a diffusion operator to model the components:

U, =, ViW 2 and U7 = W 2V]Ty
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° Scale-dependent variance estimation

; Climatological statistics from an 11-member ensemble from ECMWEF pre-
OCEANG configuration (ORCA025 775)

¢ Two ranges of scales where D, = 3 times the local horizontal resolution

~

il = ig and ig = X—il

Standard deviation for T at z = 1 metre Standard deviation for T at z = 1 metre
Scale 1 Scale 2
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Seale-dependent correlation (diffusion) tensor estimation

¢ Directional length-scale tensor D(z) estimated from the inverse of the local
ensemble gradient tensor (Weaver et al. 2021): D(z) = (H(z))_1 where

H(z) = Ve(z) (Ve(z))" and  &(2) = e(2)/0(2)

Scaled D11 tensor element for T at z = 1 metre Scaled D11 tensor element for T at z = 1 metre
Scale 1

1E+08 1E+09 1E+10 1E+11 1E+12 1E+07 1E+08 1E+09 1E+10
100 km 1000 km 10 km 100 km
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o Computational cost

@
@

¢ B, requires Ns applications of the diffusion operator.
¢ However, the computational cost does not scale with Ng !

1) For the small spatial scales, the conditioning of the implicit diffusion
matrix is improved since the length-scales are short.

Ex: No. of Chebyshev solver iterations with 1 scale = 23

No. of Chebyshev solver iterations for the small-scale term with 2 scales =5

2) For the large spatial scales, the diffusion operator can be applied on a
coarse grid since the length-scales are long.
Ex: No. of Cheby. solver iterations for the large-scale term on fine grid = 43

No. of Cheby. solver iterations for the large-scale term on coarse grid (=1/2 fine) = 21

# So the cost with Ng =2 can be made comparable to the cost with Ng=1!
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° Hybrid variances

* First, we normalize Bg,, to isolate the total standard deviations:
B=XYX¥TIB,,,,T'XY
CSDM

—1
# The normalization factors are {T'} == (\/{BSDM}m)
# This requires estimating the diagonal elements of C;;

= When 72 = j they are all equal to 1 if the diffusion operator is properly normalized.

= When % # j they are not equal to 1 and are not explicitly known. They can be
estimated, however, by reworking the randomization algorithm.

¢ Hybrid scale-dependent standard deviations:
zi _ (Z?OW,Eglim)
¢ Hybrid total standard deviations:
> h(zﬂow chim zparam)
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Diagonal of C12 and C21 for T at z = 1 metre

'-

00 0.1 02 03 04 05 06 0.7 0.8 09 1.0

Data Min = 0.0, Max = 1.0, Mean = 0.3
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5 Correlation structures

* Example of T-T correlations at 1 metre depth
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~&reliminary results from a data assimilation experiment

¢ RMS error 2 scales minus RMS error 1 scale (blue means improvement)

® Averaged results for the period 01/01/2010-01/01/2012
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° Summary and outlook

¢ Separate an ensemble into a range of scales and model the same-
scale and cross-scale covariances using a diffusion operator.

= The choice of scales depends on model resolution and the cost vs benefits of
increasing N..

¢ We can use objective methods for estimating and for filtering the
scale-dependent variances and correlation tensor.

= Little modification is required to estimation methods developed for a single
scale formulation.

¢ SDM (climatology) hybridizes naturally with SDL (flow-dependent).

= Hybridization coefficients and localization length-scales can be estimated using
BUMP (software developed by B. Ménétrier).

= SDL and BUMP are already implemented in NEMOVAR.
= Combining SDM, SDL and BUMP will be the subject of future work.
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