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Example: the SWOT mission
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Example: the SWOT mission

King, R. R. and Martin, M. J. (2021): Assimilating realistically simulated wide-swath altimeter 
observations in a high-resolution shelf-seas forecasting system, Ocean Sci., 17, 1791–1813, 
https://doi.org/10.5194/os-17-1791-2021, 2021. 

« when correlated errors are included in the full swath SWOT observations, there is a 
degradation in the sub-surface temperature and salinity, and the SSH and surface currents are 

degraded with a clear increase in the mean surface currents. While restricting the SWOT data to 
the inner half of the swath and applying observation averaging with a 5 km radius negated

most of the negative impacts, it also severely limited the positive impacts. »

SSH (m) Temperature
(K)

Salinity
(PSU)

Surface Current 
Speed

No SWOT 
(Control)

0.034 0.324 0.053 0.104

white noise only 0.027 (-21%) 0.340 (+5%) 0.051 (-4%) 0.091 (-13%)

Full error 0.041 (+21%) 0.391 (+21%) 0.054 (+2%) 0.114 (+13%)

Full error, 
Half swath,
Superobbed

0.032 (-6%) 0.324 (0%) 0.052 (-2%) 0.104 (0%)
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Diffusion operators

input vector smoothed 
vector

output vector

implicit diffusion normalization

• Diffusion operators are already in use in DA to model correlation operators
for background error

• With an implicit scheme, their inverse is easily accessible which makes them
suitable to model inverse correlation operators for observation error

• The cost of a product with 𝑹-1 would be much lower than the cost of a 
product with 𝑩

correlation operator
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Diffusion operators

Diffusion operators can be discretized on a mesh with
a finite element method, which makes them suitable

with unstructured observations
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Guillet, O, Weaver, AT, Vasseur, X, Michel, Y, Gratton, S, Gurol, S. Modelling spatially correlated 
observation errors in variational data assimilation using a diffusion operator on an unstructured 
mesh. Q J R Meteorol Soc 2019; 145: 1947– 1967. https://doi.org/10.1002/qj.3537

https://doi.org/10.1002/qj.3537


Diffusion operators

The spatially variable and anisotropic diffusion 
tensor makes the operator flexible enough to fit 

estimated observation error correlations

Both the cut-off and roll-off of the error
spectrum modelled by diffusion operators
can be adjusted using a Daley length scale

D, and a smoothness parameter M.

6



Understanding DA with a non-diagonal R

• 1D periodic domain
• Regular model and observation grids
• Spatially constant covariance parameters

• 𝑩 and 𝑹, and 𝑯𝑩𝑯𝑻 are circulant matrices
• All three are diagonal in a Fourier basis
• Their eigenvalues represent error power 

spectrums
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In variational DA, we need to converge fast and towards an accurate analysis. 
The choice of parameters for 𝑹 has a role to play for both properties. To gain insight 

on the behaviour of the DA algorithm when both 𝑩 and 𝑹 are non-diagonal, we
study a very simple system

Indicator of the convergence rate:

Goux O., Gürol S., Weaver A. T., Guillet O., Diouane Y. (2022). Impact of correlated observation errors on the 
convergence of the conjugate gradient algorithm in variational data assimilation 2212.02305, arXiv



Convergence experiment

• Ensembles of background and observations are simulated with known error statistics (𝑩 and 𝑹)
• They are assimilated using 𝑩 and ෩𝑹
• The analysis error variance is estimated at each iteration of the B-PCG from the ensemble of 

solutions

True parameters: 𝐷𝑏 = 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 30 km ; 𝑀𝑜 = 2
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Convergence experiment

observation
overfit

observation
underfit

analysis error 
at full convergence

All differences between the true observation error and the observation error model 
contribute to a sub-optimal analysis error at full convergence. 

Using a non-diagonal 𝑹 induces an overfit of the observations at large spatial scales and an 
underfit at small spatial scales
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Convergence experiment

The largest ratio of the eigenvalues of B and R determines the condition number and 
strongly influences the convergence rate of CG

Using a non-diagonal 𝑹 compared to a diagonal 𝑹 does not necessarily degrade the 
conditioning or slow down the convergence

conditioning
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Convergence experiment

We use variance inflation with the inflation factor that minimizes the analysis error at full 
convergence to find the best possible diagonal observation error model. 

Variance inflation prioritizes reducing the overfit at large spatial scales where errors are 
large at the expense of small spatial scales.

11



Convergence experiment

Using the most accurate parameters for the observation error leads to a very low analysis
error but sometimes only after a prohibitive number of iterations (especially if 𝑀𝑜> 𝑀𝑏)

True parameters: 𝐷𝑏 = 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 120 km ; 𝑀𝑜 = 10
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Convergence experiment

Reducing 𝑀𝑜 is a viable strategy to reach a reasonable convergence rate without degrading 
too much the analysis error at full convergence.

True parameters: 𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ;  𝐷𝑜 = 120 km ; 𝑀𝑜 = 10
`Reconditioned’ observation error model : 𝐷𝑜 = 120 km ; 𝑀𝑜 = 2
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Convergence experiment

Reducing 𝑀𝑜 increases the observation error power specifically at the smallest spatial scales
where both the background and observation error are insignificant, which limits the impact 

on the analysis error.

True parameters:  𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 120 km ; 𝑀𝑜 = 10
`Reconditioned’ observation error model : 𝐷𝑜 = 120 km ; 𝑀𝑜 = 2

conditioning
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Summary

• Diffusion operators could be used  in an operational context to model the inverse of the 
observation error correlation operator.

• The choice of parameters of the diffusion operator, or any observation error correlation model, 
should account for their impact on the convergence rate of the B-PCG, as a non-diagonal R can 
drastically improve or degrade the convergence rate.

• The conditioning tends to be improved by using a non-diagonal R over a diagonal R if 𝑀𝑜 ≤𝑀𝑏, 
and enforcing this relation even if it is not representative of the estimated error statistics is a 
viable `reconditioning’ strategy.
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The next step is to implement diffusion operators for observation error correlations in 
NEMOVAR to evaluate  the impact of a non-diagonal R in an operational system.



Annex: reconditioning
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True parameters:  𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 120 km ; 𝑀𝑜 = 10
`Reconditioned’ observation error model : 𝐷𝑜 = 120 km ; 𝑀𝑜 = 4



Annex: minimal condition number

Even if we completely prioritize the convergence speed by specifying an observation error
power as close as possible to the background error power, the analysis error at full 

convergence is still lower than with the best diagonal model. 

True parameters: 𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ;  𝐷𝑜 = 120 km ; 𝑀𝑜 = 10
`Reconditioned’ observation error model : 𝐷𝑜 = 120 km ; 𝑀𝑜 = 2
`Fastest’ observation error model : 𝐷𝑜 = 60 km ; 𝑀𝑜 = 8

18



Anexx: SWOT error budget

Spatially correlated errors Uncorrelated error
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Annex: condition number
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Annex: clustering with small OECs
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Parameters:  𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 30 km ; 𝑀𝑜 = 2



Annex: clustering with large OECs

22

Parameters:  𝐷𝑏= 60 km ; 𝑀𝑏 = 8 ; 𝐷𝑜 = 120 km ; 𝑀𝑜 = 10



Annex: nadir altimer
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Nadir altimeter error correlations estimated via the JPL/CNES SWOT simulator
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