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The Norwegian Climate Prediction Model – NorCPM

▶NorCPM is the combination of the NorESM and the EnKF

Data assimilation (EnKF)

Norwegian Earth System model

Observations

Ensemble

Atmosphere

Ocean

Ice Land
ice land

river

chemistry/aerosols

Ocean 
biochemistry

Objectives:
▶ Long climate reanalysis
▶ Seasonal-to-decadal climate predictions
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Data assimilation in NorCPM

▶We use dynamical covariance
▶ Covariances are constructed in isopycnal
coordinates

Seasonal correlation of SST in 2010 in the Labrador Sea

▶ Sharper correlation
▶Deeper signature
▶ Conjugate update of T and S to
preserve density

Source: [Counillon et al., 2016]
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Composite anomaly patterns of 0-2000m temperature and salinity

Source [Bethke et al., 2018]

▶ This problem is due to sampling noise despite computing the covariances in
isopycanl coordinates
▶What are the possible solutions to address this issue? 5
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Covariance hybridization – Hamill & Snyder, 2000

The hybrid covariance Pf
h is a linear combination between:

◦ a dynamic covariance Pf
d computed from the ensemble (flow dependent but large

sampling error).
◦ a static covariance Pf

s computed from a long stable climatological pre-industrial
run (static but lower sampling error).

Pf
h = αdPf

d + αsPf
s, αd, αs ≥ 0 (1)

▶ (αd, αs) = (1, 0) → full dynamic case ≈ EnKF
▶ (αd, αs) = (0, 1) → full static case ≈ set of EnOI
▶ Important to tune αd and αs to optimal performance:

• Empirical tuning: sensitivity analysis⇒ computationally expensive
• Adaptive tuning of the coefficients
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Explicit optimality of the hybridization coefficients

▶ It builds on the work of [Ménétrier, 2021] to compute optimal hybrid coefficients in
the case of strong localization

▶ The optimal hybrid coefficients are defined as those minimizing the function e:

e (αd, αs) = E
[
∥Ph − P∥2

]
= E

[
∥αdPd + αsPs − P∥2

]
(2)

▶ It can be showed that the optimal coefficients are given by:

(αd, αs) =

 ∥Ps∥2 E
[
∥P∥2

]
− E [Pd · Ps]2

∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]2

,

(
E
[
∥Pd∥2

]
− E

[
∥P∥2

])
E [Pd · Ps]

∥Ps∥2 E
[
∥Pd∥2

]
− E [Pd · Ps]2


(3)
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Properties of the optimal hybridization coefficients

The properties highlighted in [Ménétrier and Auligné, 2015] hold here:

1. Behavior of the hybridization coefficients: if Ps is multiplied by a factor λ, then
αs is divided by λ, while αd remains unchanged⇒ no need for tuning Ps .

2. Asymptotic behavior: with an infinite ensemble E
[
∥Pd∥2

]
= E

[
∥P∥2

]
, replacing

in Eq. (3) we get: (αd, αs) = (1, 0)
3. Benefits of the hybridization: Whatever the choice of Ps : e(1, 0) ≥ e(αd, αs)

Ps

P

Pd

εs

εd

Ph
εh

4. Optimality condition: Ph verifies the following
optimality condition:

∂e
∂αd

= 0
∂e
∂αs

= 0
⇔ E [(Pd − Ps) · (Ph − P)] = 0. (4)

Ph is the orthognal projection of P on the subspace
defined by Pd and Ps
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Practical implementation

▶ (αd, αs) can not be computed directly as they are a function of E
[
∥Pd∥2

]
, E

[
∥P∥2

]
,

and E [Pd · Ps] that are unknown

▶ Following [Ménétrier, 2021], we can express E
[
P2i

]
as:

E
[
P2i

]
=

(Nd − 1)2

(Nd − 2)(Nd + 1)
E
[
P2di

]
−

Nd − 1
(Nd − 2)(Nd + 1)

E [vdivd1] (5)

▶where vdi is the variance of the dynamic ensemble at layer i
▶ Simplifying assumption ”local homogeneity”: it is assumed that in an area
surrounding the water column, the vertical covariance functions are representative of
the covariance function of the water column.

⇒ Enables the estimation of the terms with the expectation operator E
▶ (αd, αs) can be estimated using Eqs. (3)-(5) and the local homogeneity assumption
▶ (αd, αs) are estimated every ∆x = 5 points and interpolated to the rest of the grid.
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Experimental design

▶Monthly assimilation of synthetic SST over 31 years: 1980-2010
▶ Synthetic SST observations are generated from an independent realisation (TRUE) of
the same model with error perturbation matching that of real data (HadISST2)
▶ 30 dynamic members and 315 seasonally varying static members generated from a
climatological run with pre-industrial conditions
▶ 4 different experiments:

• FREE: 30 members run with transient forcing from 1850 to 2014
• EnKF: the standard EnKF used in NorCPM
• Standard hybrid: constant and global hybridization coefficients with αd + αs = 1.
We run 7 versions with αd = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1

• Adaptive hybrid: the hybridization coefficients are estimated at each assimilation
cycle and vary spatially. αd + αs can be different from 1

12
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Variability of the hybridization coefficients with the adaptative method

(αd, αs) are globally averaged (ice covered regions are masked)

19
82

19
84

19
86

19
88

19
90

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

Time (years)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1
,

d
,

s
,

d
+ ,

s

▶ Convergence of the hybrid coefficients within 3 years
▶ Some seasonal variability of the coefficients
▶αd + αs ≤ 1 (automatic scaling of Ps )
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Seasonal variability of (αd, αs) with the adaptive method

▶We show the average of the monthly estimates for the period 1983–2010

▶αd and αs are somehow anti-correlated
▶αd is large where the internal variability is important, for example in the North
Atlantic or the tropical Pacific.
▶ Inter-annual deviation from the seasonal estimate is very small (not shown)
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Intercomparison of the EnKF and the hybrid covariance schemes

▶Mean Skill Score (MSS) of one of the nine configurations i: EnKF, adaptive hybrid,
standard hybrid with αd = 0, 0.1, . . . , 1:

MSSi = 1− RMSEi
1
9
∑9

j=1 RMSEj
(6)

MSS Temperature MSS Salinity

d
=0

d
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d
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d
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0.00
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▶ The standard hybrid performs better for large values of αd = 0.8, 0.9
▶Both the standard hybrid and the adaptive hybrid outperform the EnKF and improve
performance substantially between 2000 and 4000m depth
▶ The adaptive hybrid outperforms the standard hybrid
▶We compare hereafter the adaptive hybrid and the EnKF.
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Difference of RMSE with FREE between 1000–2000m

▶Difference of pointwise RMSE between FREE and assimilations run (warm colours
indicates that assimilation reduces error)

Temperature Salinity
En
KF

Ad
ap
tiv
e
Hy
br
id

▶ Improvement in the North Atlantic subpolar gyre
▶Mitigate the bias in the north Atlantic and the Southern Ocean. 17



Difference of RMSE with FREE between 2000–4000m
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En
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▶ The adaptive hybrid drastically reduces the degradation seen in the EnKF in the
North Pacific and Atlantic, and improves the benefit in the Southern Ocean
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Conclusion and perspectives

Conclusion
▶Development of an adaptive hybrid covariance method (explicit optimality
[Ménétrier, 2021]) for the assimilation of SST within NorCPM
▶ The hybrid covariance schemes outperform the standard EnKF
▶ The adaptive hybrid outperforms the standard hybrid
▶Article in prep. to be submitted to JAMES

Perspectives
▶ Testing the method in real framework and with other observations data sets
▶ Combining with other approaches (isopycnal vertical localisation [Wang et al., 2022])
▶ It should be used for producing long coupled reanalysis from 1850–present⇒
project NFR-COREA.
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Difference of the degrees of freedom of the signal with the EnKF

▶DFS = Tr (KH) ⇒ can be interpreted as the amount of observation extracted from
the observations. [Cardinali et al., 2004].

EnKF–Standard Hybrid EnKF–Adaptive Hybrid

▶ The standard Hybrid causes larger assimilation update than the EnKF
▶ The Adaptive Hybrid achieve better performance with nearly similar assimilation
updates.
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