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Introduction

» Sea Surface Temperature (SST)

» Essential ocean variable

» Plays a crucial role in heat, freshwater, and momentum exchange at
the ocean-atmosphere interface

» Gridded SST products

» Based on satellite (Infrared, microwave) and in-situ observations
» Typical resolution: daily, 0.25deg x 0.25deg

» Produced by objective analysis method such as the optimum
interpolation

» SST assimilation in ocean DA systems
» Gridded SSTs are utilized for assimilation in many systems

» Itis desirable for high-resolution DA systems to assimilate satellite L2
data directly because gridded SSTs are spatially and temporally
smoothed



JMA’s operational system (MOVE-4DVAR)

» North Pacific, 0.1deg x 0.1deg

» 4D-Var assimilation method
» 10-day window
» Control variables are TS increments to the initial condition (strong-
constraint 4D-Var)

» SST assimilation in MOVE-4DVAR
» MGDSST: JMA’s SST product, 0.25deg

» Temporal mean SSTs averaged over the 10-day assimilation window
are used due to the temporally smoothed feature of MGDSST
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Toward improvement of SST analysis and forecast

» Itis desirable to assimilate satellite L2 SST instead of gridded
products such as MGDSST

» The 10-day window is too long to analyze the short-term SST
variations with the strong-constraint 4D-Var

> We introduce weak-constraint 4D-Var to overcome this
issue
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Objective of this study

» Weak-constraint 4D-Var is introduced to reproduce detailed spatial-
temporal variations of SST with the present setting of the 10-day
assimilation window

» Assimilation experiments using high-resolution satellite SST are
conducted and impacts of the weak-constraint 4D-Var scheme are
evaluated



4D-Var scheme in MOVE
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IAU initialization term

:Amplitude of vertically coupled T-S EOFs (control variable)
:Diagonal matrix of background standard errors
:Orthogonal matrix composed of dominant TS EOF modes
:Diagonal matrix of singular vectors for TS EOFs
:Observation operator

:Observations

:Horizontal correlation matrix for background errors
:Observation error covariance matrix
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Extension of control variables:

introduction of weak-constraint 4D-Var
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Himawari SST

* Himawari-8

Geostationary meteorological satellite
Launched in October 2014

Location: 140.7E at the equator
Coverage: 60S-60N, 80E-160W

* Himawari SST

Himawari SST > iy 63»

Observed by Infrared sensors
Horizontal resolution: 2km
Observation frequency: 10 min

Skin SST ( # bulk SST = model SST)
- Need correction of Himawari SST

SST - SST;, 4 (K)

.0 0.5 1.0 1.5 2.0 2.5 3.0

Model SST 2 im-

"'J.:lr’ SSTint:
+ S5Tekin : sea surface skin

temperature
-v-ﬁ:F-—- SS5Tsubskin :

<3> SSTdepth:
10m- + $5Tfnd: sea surface foundation
temperature

Typical temperature profiles near the surface (GHRSST, 2012)

Depth
Night-time, or strong winds

Himawari-8

50N A

30N -

20N 1

100 120E 140E  160E 180

Example of Himawari SST

30

27

24

21



Correction of Himawari SST

Bias Table
* Every 2-degree x 2-degree box
* Function of local time and month

e Correction values are calculated from a match-
up b/w in-situ T and hourly Himawari SST
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Assimilation experiments

Common setting:
* DA system: MOVE/MRI.COM-4DVAR
— North Pacific, 10km

e Period: 1 Jan—9 Jul 2016
e Assimilation window: 10 days

* Assimilated observations other than SST
— Along track SLAs (Jason-2, Cryosat-2, Altika)
— In-situ temperature and salinity profiles

Experiments: Vertical oroiect ficiont
. ” . . ertical projection coerricien
CTRL” (same as the setting of the present operational system) for SST increments

— 4D-Var method: Original version (strong constraint)
— Assimilated SST: MGDSST (10-day average) ’

 “OLD_HIM”
— 4D-Var method: Original version (strong constraint)
— Assimilated SST: Himawari SST (daily)

« “NEW_HIM”
— 4D-Var method: Newly developed version (weak constraint)
— Assimilated SST: Himawari SST (daily)
— SST increments are projected down to MLD

Depth

Mixed layer depth -



Comparison b/w OLD_HIM and NEW_HIM

Cost function Gradient
1509+06 LA LR L L LR B AL L AL L ': 1 LA AL L L L L L B
1.40e+06 f; OLD HIM [ 0.9 [ OLD_HIM ’
1.30e+06 H - . E ]

A 08 F\ NEW_HIM |3

1.20e+06 “\\ -\ 7
1.10e+06 N\ 07 £ \\ :
1.00e+06 PANY

9.00e+05 N\
8.00e+05 |
7.00e+05 |
6.00e+05 |
5.00e+05 |

4.009+05:"""‘"""""""""""E 0_15....|....|‘...|....\....\...‘
0 5 10 15 20 25 30 0 5 10 15 20 25 30

costf
g/g0

Iteration Iteration

» In OLD_HIM and NEW_HIM, the same observations are used.

» The cost function and its gradient in NEW_HIM decrease steadily with
iterations, while their decreasing rate are obviously slow in OLD_HIM.
» Thisis because:

» Short-term variations in Himawari SST are well represented by the newly
added daily SST increments in NEW_HIM.

» The short-term variations of SST are not controlled by only increments to the
initial condition (OLD_HIM).



Comparison b/w OLD_HIM and NEW_HIM

SST time series

20
191
181
174
161
15

~ 14

S

2 13
©

S~ 12<
11
10

(142E, 38N)

OBS (Himawari SST)
A OLD_HIM
7 NEW_HIM

35041A§ 16MAR 1APR 16APR TMAY 16MAY

» In OLD_HIM and NEW_HIM, the same observations are used.

» The cost function and its gradient in NEW_HIM decrease steadily with
iterations, while their decreasing rate are obviously slow in OLD_HIM.
» Thisis because:

» Short-term variations in Himawari SST are well represented by the newly
added daily SST increments in NEW_HIM.

» The short-term variations of SST are not controlled by only increments to the
initial condition.
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» First-guess fields (forecast from the previous cycle) are evaluated using in-

situ data

» RMSE is relatively large in SST frontal regions
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SST RMSE: CTRL and NEW_HIM

» First-guess fields (forecast from the previous cycle) are evaluated using in-
situ data

» RMSE is relatively large in SST frontal regions

» RMSEs for NEW_HIM are improved in most areas of the western North
Pacific
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Impact on subsurface temperature

» Improvements in RMSE for NEW_HIM are 0
seen up to around 150m.

(120—170E, 20—50N)

50 1

» In OLD_HIM, subsurface temperature is
degraded compared to CTRL. h
150 1

» The slow convergence of the cost function = N A
might lead to the degradation of the £ 200 b
analysis results in OLD_HIM. g I & 2
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Summary

We have developed a new 4D-Var scheme based on weak-
constraint 4D-Var to assimilate high-resolution SST.

Daily SST increments are added to control variables to
represent short-term variations.

The result of assimilation experiments suggest that the new
scheme works well and short-term variations in Himawari SST
are well represented.

Future works:

» Further evaluation of the new scheme with longer assimilation
experiments

» Tuning/optimization of assimilation parameters such as:
e Observation error for Himawari SST
e Background error for SST
e Vertical projection of SST increments
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