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Direct measurement of momentum, heat and moisture exchange (fluxes) in
the marine surface layer

Momentum Flux: T, = PgUW = paCpS, AU Drag Coefficient
Sensible Heat Flux: Qy = pac,wT = pacyCyS,A®  Stanton Number
Latent Heat Flux: Qg = pgL,wq = pgl,CyS,AQ  Dalton Number
m=) Moving platforms require motion correction of anemometers

mm) Minimize flow distortion
=) Add capabilities E=0z/(pyL,)

Saildrone
Mobile Fluxes
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2017 NASA Air-Sea Interaction CLIMODE

1992 TOGA COARE SPURS Spar (ASIS) Year long
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SPURS OOlI, TPOS & XSpar
Latent Heat Flux Real-time Fluxes



Ships

Ships will remain an important
component of air-sea interaction
research for the foreseeable future

e They support instrumentation to
estimate fluxes (bulk and DC).

* They support systems for remote
sensing of the MABL and OBL

Facilitate balloon soundings.
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Ship Drag Coefficient — Flow Distortion

« Optimal placement of sensors based on wind
tunnel results and high-resolution models. CLIMODE Drag

 Empirical corrections for flow distortion on S
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« Landwehr, S., N. O'Sullivan, and B. Ward, 2015: 0 o 10 15 20 25
Direct flux measurements from mobile platforms at U10N (m/s)

sea: Motion and airflow distortion corrections
revisited. J. Atmos. Oceanic. Tech., 32, 1163- 1178.
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Ship Transects
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Some cruises need to be dedicated to Air-Sea Interaction
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Surface Moorings from Ships

Woods H SLIDE 6



Surface Moorings
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COARE

A semi-empirical bulk algorithm



MBL/CBLAST Objectives

« When and where is Monin-Obukhov Similarity theory valid over the ocean?
« When, where and why does it fail?

R/P FLIP RASEX Tower ASIT/MVCO BB Tower




Monin-Obukhov Similarity

The structure of the turbulence flow in the surface layer is influenced by both mechanical
and thermal forcing. Monin and Obukhov (1954) were the first to describe a similarity
hypothesis that allows us to superimpose the influence of these two forcing mechanisms.
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Objective of Kansas Experiment: Validate Monin-

Obukhov Similarity (MOS) scaling through a

carefully conducted experiment within a horizontally

homogeneous atmospheric surface layer.

Kansas 1968
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Monin-Obukhov Similarity

« MOS states that various turbulent statistics are universal function
of z/L after normalization by the appropriate scaling parameters.

 For example, the dimensionless shear

Y 4.2l

u. 6z
IS predicted to be a universal functions of z/L.

* This hypothesis has been substantiated by a number of
studies in the atmospheric boundary layer over land.

« ~40 years after Kansas, we confirmed this hypothesis over
the ocean.



Monin-Obukhov Similarity
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Measurement of mean and flux profiles within the offshore
marine boundary layer.

Dimensionless Shear %(Ij =— —

The Ocean is Kansas-like in the mean,
with k ~ 0.4 above the wave boundary
layer.

Applications

T T
«  GBLASI

. el Unstable

§ ol 15t Order Closure
£ 2- [ ¥ s~ RS 7
< | . Gt ) i
b e Stable - — u.xz ouU oU
% : -ole -OIG -0|4 -012 i olz 04 06 08 o UW = u* = — Km AL
- RS ¢(z/L) oz 0z
J djusted Log
E

U(z2)=U(z,) +“*{|n(2]—y/m(
K Z,




Waves & Surface Layer Turbulence

« MOS does not account for wave-induced forcing.

» Therefore, MOS functions will become increasingly inaccurate as
you near the ocean surface.

« However ...
—the terrestrial and marine observation are in good agreement in the mean.

—We observe little systematic variability about this mean due as a function of
wave age with the possible exception of swell.

 This provides evidence that the WBL for momentum is shallow
under the range of conditions found in the CBLAST and MBL data
sets.



What about waves?

Let’s take a closer look!



Instantaneous Wind Profile Over Waves
R/P FLIP
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Instantaneous Wind Profile Over Waves
R/P FLIP
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Dimensionless Shear — A Closer Look

Dimensionless Shear
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Drag Coefficient
« COARE Algorithm

Iy = uw _ K 2
Co(2/20,2/L) = =376~ = <ln(Z/Zo) T ‘/’“(Z/L)?

Atmospheric
Stability

. w (kY
DN(Z/ZO) — AUI%,G - ln(z*z_o] E;)rlljggtr;]ness

* Wave Impacts

— Waves have a modest impact on the dimensionless
profiles above the WBL

— Waves have a first order impact on the surface
roughness as roughness elements.



Surface Momentum Exchange & Waves

« Above the Wave Boundary Layer — MO Similarity expected to hold.
oUW = pu'w’

« Within the Wave Boundary Layer — MO Similarity begins to break down.

PUW = pu'W' + puw
« At the surface

aw=v 3 oam=vdY pﬁ—77
P dz " odz, U ox,
Y Y

Viscous Stress  Form Drag

 COARE 3.5 parameterizes this through the roughness length:

2

L =at B p=i,,)
u. g




Research Objectives

To improve our understanding of the processes that control

the exchange momentum, heat and mass across the air-sea
Interface.

To develop platform and systems that directly measures the
momentum, sensible heat and latent heat fluxes.

COARE 3.5

R/P FLIP

Research Discus| OOI Mooring




Surface Moorings
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Platform Motion




Motion Correction
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— (a) 3-axis Sonic Anemometer
— (b) 3-axis angular Rate Sensors
— (c) 3-axis Accelerometers

— (d) Compass

— Current meter
— Z2-axIs anemometers
— RH/T/P Sensors

— Radiometers

— Precipitation gauges
— Sea Temperature
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CLIMODE Deployments and Cruises

CLIMODE is designed to investigate the processes responsible
for the formation, subduction and dispersal of EDW in the North
Atlantic through modeling & observations.
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The Gulf Stream

« Cold air outbreaks drive extremely active convection over
the region.

« The net winter heat loss in this region is 400 W/m?.



Momentum Fluxes

Surface Stress
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MBL/CBLAST/CLIMODE Drag Coefficients
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MBL/CBLAST/CLIMODE Drag Coefficients
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MBL/CBLAST/CLIMODE Drag Coefficients

COARE 3.5 e
Edson, James B., and Coauthors, 2013: On the Exchange of Momentum . " S
over the Open Ocean. J. Phys. Oceanogr., 43, 1589-1610. -y
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Flux Time Series
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COARE: A Global Formulation using a Growing Global Array
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Out to High Wind

Via the Hockey Stick Extrapolation



MBL/CBLAST/CLIMODE/RASEX

Friction Velocity versus Wind Speed
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Drag Coefficient at High Winds
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COARE 4.0
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Wave-based COARE

Using wave steepness
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Long Wave Modulation of Surface Stress

Wave steepness dependent formulation
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Peak Phase Speed vs Mean Phase Speed

Investigating the impact of sea state on momentum flux through coupled Ocean-Atmosphere-
Wave simulations using the sea surface fluxes parameterization COARE3.5

We observed 2 different sea state regimes in the Tropical North Atlantic region :

* Young steep waves tend to increase the surface roughness and stress

« Old flat waves tend to decrease the surface roughness and stress

Significant impact on near surface wind speed
However, compared to observations, the model over

0
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predicts the impact of swell zlovoh D <&)2
Ways to alleviate low stress bias:
« Alignment wind-waves

* Using the mean wave phase speed (C,,)
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Heat Exchange



Research Objectives

To improve our understanding of the processes that control the
exchange momentum, heat and mass across the air-sea interface.
To develop platform and systems that directly measures the
momentum, sensible heat and latent heat fluxes.

To improve parameterization of these fluxes for use in numerical
models and process studies.

Momentum Flux: 7, = p,uw = p,CpS AU
Latent Heat Flux: O = paLvW_q = p L CEIS',,AQ

i

Transfer Coefficient
P.C CAS.A® ransfer Coefficients

112

Sensible Heat Flux: (., = p_c wT

a pa

IR

Buoyancy Flux: Qp = pg ¢y WT, E paCy|CplS-A0,,

= pac,(WT + 0.510Wq)



Buoy-based Transfer Coefficients WT, o &
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Challenge: Latent Heat Flux from Buoys
SPURS-1 SPURS-2—~




Buoy-based Transfer Coefficients

Not particularly
different from
COARE 3.5

Cpgy X 1000

Drag coefficient
IS in very good
agreement with
COARE 3.5

INCOIS
Mooring looks
very promising.

Cpgy X 1000

Hope to add a
IRGA to XSpar
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Combine Buoy & Ship Fluxes to Parameterize
the Dalton & Stanton Numbers



Ailr-Sea Interaction Field Studies

HiWinGS | Ship Only
r ) = D%}Ol l
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2017 NASA Air-Sea Interaction CLIMODE

1992 TOGA COARE Spar (ASIS) Year long
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Ship-based Flux - Challenge: Reduce Flow
Systms Distortion

« Optimal placement of sensors based on
wind tunnel results and high-resolution
models.

« Empirical corrections for flow distortion
on the means based on LIDAR and other
measurements.

* New methodologies for reduced flow
distortion such as
« DCEFS.  Landwehr, S., N. O'Sullivan, and B.
*  Open path hygrometers Ward, 2015: Direct flux
« Closed path hygrometer measureme_nts from _mobile platfo_rms
. at sea: Motion and airflow distortion
« Aspirated RH/T sensors ) .
corrections revisited. J. Atmos.
* Solar/IR sensors Oceanic. Tech., 32, 1163- 1178.
« Optical rain gauge
 Self-siphoning rain gauge
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Crion X 1000

Ship & Buoy-based Dalton Numbers
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Ship & Buoy-based Dalton Numbers
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A NEW PLATFORM



2020 Hurricane Season
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Through the Eye of Epsilon
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The Drifting eXpendible Spar Buoy (X-Spar)
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Summary

Marine physicists have made significant progress in recent decades in our ability to directly
measure surface fluxes from research vessels, moored buoys and, most recently, mobile
platfroms.

These platforms utilize Direct Covariance Flux Systems (DCFS) to remove platform motion
from the measured wind speeds to measure the flux directly.

Over the past decade or so, researchers have begun to collect long time series, O(year), of
momentum and buoyancy fluxes from surface moorings that experience less flow distortion
over a wider range of conditions.

The accuracy of the COARE transfer coefficients continues to improve over a wind range of
wind speeds.

Understanding the relationship of the transfer coefficients to wave driven processes at low
winds and their behavior at high to extreme winds remain major objectives.

This includes sensors to measure latent heat fluxes on research moorings and some mobile
platforms to improve the heat flux parameterizations at all wind speed.

Recent result suggest that he heat and moisture coefficients are different, which will impact
model output and global budgets.
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