A Deep Learning-based Technique for Long-term Prediction of Sea Surface Temperature: over the Aegean, Ionian and Cretan Seas (NE Mediterranean Sea)

> Marios Krestenitis, Yannis Androulidakis, Yannis Krestenitis COSS-TT, Montréal 2023

## Contents

- Introduction
- Study Area
- Dataset
- Methodology
- Train & Evaluation
- Practical Cases

#### Introduction

- Sea Surface Temperature (SST) is a main indicator of global warming
- Extreme events of prolonged high SST levels are named Marine Heat Waves (MHWs)
- MHWs affect natural and urban coastal environment
- Accurate prediction of MHWs in the distant-future (from years to decades) is a challenging task and a considerable need

#### **Study Area**

- Northeastern Mediterranean Sea
  - Aegean, Ionian, and Cretan (AIC) Seas
  - environmental protected areas
  - fishery and aquaculture zones
  - large urban areas
- Significant **increasing** trends of SST during the last decades
- MHWs occurrence:
  - strong spatial variability over the AIC basin
  - stronger positive trends in the northern Aegean Sea
  - "hot spots" of MHW formation
  - vital need of the accurate prediction of SST
- Summer 2021:
  - prolonged extreme sea temperature conditions in Thermaikos Gulf
  - damaged mussels production of both 2021
    and 2022



#### Dataset

#### **Satellite** Observations

- SST satellite-deried fields; E.U. Copernicus Marine Service
- SST fields averaged over 7 sub-basins of the AIC domain

#### Atmoshperic data

- ERA5 hourly data; Copernicus Climate Change Service
- > Air temperature, wind speed, air pressure, shortwave radiation, longwave radiation
- Study period (2008-2022; latest access on 23/04/23)
- Seasonal decomposition
  - Utilize original values & residual
  - Exploit the residual noise to learn small-scale SST variations

#### Methodology

- Utilize the effectiveness of well-known deep learning architectures
- Long-term **multiregional** SST forecasting
- **Variable** temporal (*n*) & spatial (*k*=8) resolution
- **Feature extraction** module:
  - enhance the features quality
  - fuse the spatial information
- **Reccurent** Stream
  - Analyze temporal dependencies of SST
  - Capture **short-term** flunctuations
  - Capture **complex** patterns
- Linear Stream
  - Capture the long-term trends
  - Provide a baseline prediction



#### Train & Evaluation

- Training set: 01/01/2008 to 31/12/2020
- Evaluation set: 01/01/2021 to 31/12/2021
- Testing set: 01/01/2022 to 31/12/2022
- Length n of time-series: 365 days
- Trained for 200 epochs with batch size 128
- Weighted Mean Squared Error (wMSE)
  - Higher penalty of wrong predictions especially during summer period
  - **Force** the model to forecast extreme SST levels instead of **naively fit** to the trend

# Ablation Study

| Model        |              |              | 2021   |          |          | 2022   |          |          |
|--------------|--------------|--------------|--------|----------|----------|--------|----------|----------|
| TimeVec      | Linear       | Recurrent    | WMSE   | MSE(<15) | MSE(>24) | wMSE   | MSE(<15) | MSE(>24) |
| $\checkmark$ | $\checkmark$ | ×            | 0,7712 | 0,1690   | 0,5896   | 1,1357 | 0,8273   | 0,6452   |
| $\checkmark$ | ×            | $\checkmark$ | 0,7764 | 0,4048   | 0,4098   | 1,1201 | 0,2118   | 0,9733   |
| ×            | $\checkmark$ | $\checkmark$ | 0,5996 | 0,1671   | 0,4355   | 1,5639 | 0,9305   | 1,0540   |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | 0,5601 | 0,1642   | 0,3768   | 0,9621 | 0,1650   | 0,6919   |

SST Estimation for Year 2021



SST Estimation for Year 2022



## Forecasting: Practical Cases

- Predict MHWs events
- Forecast SST values for 2023

## Predicting MHWs



- MHW events (number) 2022 Observed Predicted (#) MHM S Ionian NE Aegean N Ionia NW Aegean SW Aegan SE Aegear Cretan Sea MHW total duration (days) 2022 30 MHW (days) 00 N Ionian NW Aegea **NE Aegear** SW Aegar S Ionia SE Aegea Cretan Sea
- Marine Heat Waves (MHW) detection on predicted and observed SST timeseries
- Based on methodology by Hobday et al. (2016)
- Mean monthly 90<sup>th</sup> percentile baseline (red line)

- Predicted number of events (upper)
- Predicted duration of events (lower)
- Agreement (high in Ionian and SW Aegean)
- Weaker for Northern Aegean areas

SST Estimation for Year 2023



#### Conclusions

- Necessity for accurate prediction of SST
- Novel & efficient deep-learning based method to forecast SST
- Multiregional forecasting
- Variable spatial & temporal resolution
- Adaptive learning
- Future work:
  - **increase** spatial resolution
  - **computer vision** approaches

