

CLEAN ARCTIC: USE OF ABSOLUTE DYNAMIC TOPOGRAPHY DATA TO IMPROVE ESTIMATES OF PLASTIC DRIFT IN THE ARCTIC

cesa.

Gregory Smith¹, Charlie Hébert-Pinard¹, Audrey-Anne Gauthier², Andrew Peterson¹, François Roy¹, Pierre Veillard³, Yannice Faugère³, Sandrine Mulet³, Miguel Morales Maqueda⁴

¹ Meteorological Research Division, ECCC

² Meteorological Service of Canada, ECCC

³ Collecte Localisation Spatiale (CLS), France

⁴ Univeristy of Newcastle, UK

Coastal Ocean Shelf Seas Task Team Workshop, Montréal, May 2-4, 2023

Canada

CONCEPTS CANADIAN OPERATIONAL NETWORK OF COLUMND EXVIRONMENTAL PREDICTION SYSTEMS

CLS Arctic sea level anomaly product

Sea level retrieval in polar oceans

Classification to select leads and ocean

Neural Net based (Poisson et al., 2018, Longépé et al., 2019)

- Gridded and <u>along-track</u> Arctic ocean product
 - from July 2016 to June 2020
 - 25 km, 3 day grid
 - 50°N < lat < 88°N

Arctic sea surface height maps from multialtimeter combination

Pierre Prandi[®]¹, Jean-Christophe Poisson^{2,a}, Yannice Faugère¹, Amandine Guillot³, and Gérald Dibarboure³ ¹CLS, 11 rue Hermès, Parc Technologique du Canal, 31520 Ramonville Saint-Agne, France ²VORTEX-IO, Toulouse, France ³CNES, Toulouse, France ^aformerly at: CLS, 11 rue Hermès, Parc Technologique du Canal, 31520 Ramonville Saint-Agne, France

Correspondence: Pierre Prandi (pprandi@groupcls.com)

- Can altimetry observations under ice help to constrain Arctic circulation?
- How can we make best use of the data?

Approach

SLA = SSH - MSSADT = MDT + SLA

« classical » method to compute ADT

MDT computed from MSS and geoid model (and also in-situ data for the smaller scales)

MSS estimated from altimetric mission mean profiles

What about in polar regions ?

- Seasonal variability of sea ice coverage
 - Mean Sea Surfaces biased towards summer conditions
- Recent years have seen an increase of the summer melting
 - Altimeter data are now measured in areas never observed before

Higher error in MSS/MDT results in poorer representation of SSH in ocean prediction systems

- SSH: Sea Surface Height
- SLA: Sea Level Anomaly
- MSS: Mean Sea Surface
- ADT: Absolute Dynamic topography
- MDT: Mean Dynamic Topography

No need of 'mean' field (MSS/MDT)

Limitations

Geoid model limits the spatial resolution (> 125 km pour GOCE)

- SSH: Sea Surface Height
- SLA: Sea Level Anomaly
- MSS: Mean Sea Surface
- ADT: Absolute Dynamic topography
- MDT: Mean Dynamic Topography

ADT map for 2017-03-01 (reference period : 06/2016 – 06/2018)

ADT – mean(ADT)

ADT

SLA – mean(SLA)

SLA leads (Prandi, 2021)

REGIONAL ICE OCEAN PREDICTION SYSTEM

RIOPS developed for Arctic METAREAs support:

- NEMO-CICE (3-8 km)
 - Z-level, k-eps, landfast ice
 - OBC from GIOPS + tidal harmonics
 - 84hr Ice-ocean forecasts
 - Coupled to 3km pan-Arctic atmospheric model for YOPP

Data Assimilation

- 2x7-day analysis cycles and daily 1d cycles
- Multivariate SEEK filter (SAM2)
- Background error from 10-year hindcast (sub-monthly anomalies)
- Assimilates SLA, SST, in situ T/S profiles
- Hybrid MDT: CNES-CLS13 + innov from GLORYS
- Blended with 3DVar ice analysis
 - CIS charts, SSMI, SSMI/S, AVHRR, AMSR2
- 3DVar T/S bias correction
- 7d Incremental Analysis Updating
- Online sliding window tidal filter allows non-stationary tides (e.g. due to sea ice)

Smith et al. (QJRMS2015, MWR2018, GMD2021)

ASSIMILATION OF ARCTIC ADT IN RIOPS

Several technical changes required to assimilate under-ice altimetry:

- De-activate use of under-ice Bogus observations
- Modify observation error estimates (MDT vs Geoid)
- Need to adjust background error used to accommodate different scales represented in ADT
 - 100 additional pass Shapiro filter
- Smooth trial fields as part of observation operator to avoid misrepresentation of small scales as error

Evaluation strategy:

- Produce experiments over 1-yr evaluation period
- Produce final 4-yr reanalysis with final configuration
- Assess impact on plastic drift

COMPARISON OF INNOVATIONS FROM SLA VS ADT

Performed 1-yr experiments to investigate impact of ADT and SLAleads (under ice) products,.

EXP-SLA:

- Operational settings but with SLAleads assimilated under ice
- Under-ice bogus obs deactivated.
- SLA-global in open water

EXP-ADT :

- Operational settings, but assimilate ADT in place of conventional SLA. No bogus obs under ice
- ✓ Generally, innovations are smaller for the dataset that is assimilated.
- Significant difference between products!

Rx_sla_leads – rx_cl_v0 RMS for C2

RMS smaller for EXP-ADT

diff RMS ADT

EXP-ADT – EXP-SLA

Rx_sla_leads = rx_cl_v0 RMS for ADT

COMPARISON OF INNOVATIONS FROM SLA VS ADT

Performed 1yr experiments to investigate impact of ADT and SLAleads (under ice) products,.

EXP-SLA:

- Operational settings but with SLAleads assimilated under ice
- Under-ice bogus obs deactivated.
- SLA-global in open water

EXP-ADT :

- Operational settings, but assimilate ADT in place of conventional SLA. No bogus obs under ice
- Generally, innovations are smaller for the dataset that is assimilated.
- Significant difference between products!

Rx_sla_leads – rx_cl_v0^bRMS for C2-leads

RMS smaller for EXP-ADT

diff RMS ADT

Rx_sla_leads = rx_cl_v0 RMS for ADT

COMPARISON OF INNOVATIONS FROM SLA VS ADT

- ✓ Mean innovations for Cryosat2-leads have large values (>6cm) that vary from one region to another.
- ✓ Mean innovations for ADT show reasonable values
- ✓ Avoids use of MDT that has unreliable values under and near ice.

0

CREG12(ref) = -0.75799

ADT VS SLA – SURFACE CURRENTS (JAN-MAR)

- ✓ Under-ice assimilation impacts various Arctic regions (e.g. Beaufort Gyre and Laptev Sea shelf break current).
- ✓ The impact differs considerably between experiments using SLA-leads vs ADT!
- ✓ Large potential impact for estimates of transports across the Arctic!

ADT VS SLA – SURFACE CURRENTS (JAN-MAR)

- ✓ Under-ice assimilation impacts various Arctic regions (e.g. Beaufort Gyre and Laptev Sea shelf break current).
- ✓ The impact differs considerably between experiments using SLA-leads vs ADT!
- ✓ Large potential impact for estimates of transports across the Arctic!

SUMMARY

- Recent under-ice altimetry products open the door to improved constraints on circulation in polar regions in operational prediction systems
 - Uncertainty in MDT is a major limitation
 - Significant sensitivity to use of SLA-leads vs ADT
- Assimilation of ADT appears beneficial provided assimilation system is adjusted appropriately
 - R-geoid, B-matrix and H-operator filtering
 - Significant impact on major features of Arctic circulation
 - Beaufort Gyre, Laptev Shelf current, East Greenland current
 - Multi-year reanalysis underway....
- Next steps: Assess impact on drift of microplastics....

DISPERSION OF MICROPLASTICS IN THE ARCTIC

- Use Mountford and Morales Magueda (2019, 2020) Eulerian model for the dispersion of microplastics in the ocean
- Microplastic model coupled to NEMO
 - provides Eulerian currents, Gent-McWilliams (1990) bolus eddy velocities, isopycnal and diapycnal diffusivities, and seawater density fields to drive the microplastic model.
- Different plastic types characterized by a nominal particle size and density.
- Changes in concentrations are governed by source-sink, advection-diffusion equations, but with an added settling velocity.
- Assess sensitivity of ADT assimilation in **RIOPS on distribution of microplastics.**

- Very Low (0-0.0005 items/m³)
- Low (0.0005- 0.005 items/m³)
- Medium $(0.005 1 \text{ items/m}^3)$
- High $(1-10 \text{ items/m}^3)$

> 0 - 10

> 100000

Very High (>10 items/m³)

Ranges based on NOAA microplastic database

Water samples mainly collected using tow nets and vessel underway pump systems

EXTRAS

FILTERING OF BACKGROUND ERROR MODES

- ✓ Reduce variance for lengthscales smaller than 200 km to improve coherence with ADT.
- ✓ Optimal number of passes between 100 and 200 passes.

Example for Sea surface salinity over the Arctic Ocean

100 pass Shapiro filter

Difference

Dynamic height increment

IMPACT OF BACKGROUND ERROR FILTERING

- Power spectral density (PSD) of dynamic height increment for experiments with 100 and 200 additional passes of Shapiro filter on background error.
- Significant attenuation of energy for wavelengths less than 300 km.
- Attenuation consistent with filtering applied to background error.

MODIFICATION TO OBSERVATION ERRORS

- Altimetry obsevation errors in RIOPS depend on instrument error, coastal error and MDT error.
- Here, replace MDT error with Geoid/ADT error to avoid Gibbs oscillations near pole.
 - ✤ 5cm south of 80°N
 - Ramp from 80-83°N up to 25cm

IMPACT OF ADT OBSERVATION ERROR ON SSH

Tide gauge comparisons

Prudhoe Bay tide gauge is seasonally ice-covered

Monthly DTU dataset can not represent high frequency sea level signals

Better agreement with our multimission dataset

