

Coastal Ocean and Shelf Seas (COSS-TT) Meeting 2023

Contact : theo.brivoal.gmail.com / theo.brivoal@meteo.fr

A kilometric scale nested configuration over the Iberian -Biscay - Ireland area: assessment and impact on ocean

dynamics

1

Demonstrating impact on CMEMS systems Théo Brivoal, Jérome Chanut, Emmanuella Clementi, Michele Giurato, Romain Bourdallé-Badie

Mercator Océan / CMCC

How ocean models can benefit from an increase of the resolution?

- Currently, the highest resolution of Mercator configurations is 1/36° (2-3km) (e.g : IBI36)
- 1^{st} baroclinic Rossby radius \simeq scale of mesoscale eddies
- Mediterranean sea : mesoscale structures are poorly resolved at a 1/36° (only 2 to 3 points per eddy)
- Continental shelf: eddies are not resolved
- Also:
 - Resolving higher baroclinic modes = better representation of internal wave-driven mixing processes
 - Better representation of geometric constraints (e.g: Gibraltar)

First baroclinic rossby radius on the eNEATL36 domain Nest area is indicated in black

Configuration description

Configuration : eNEATL36 + Blzoo (Biscay zoom) ("IBI prototype like")

- NEMO 4.2 (post-IMMERSE)
- Parent configuration : eNEATL36
 - 1/36° resolution (~2-3km)
 - 150s time step
- High resolution nest (Blzoo) :
 - based on AGRIF code
 - 1/108° resolution (~1km)
 - 50s time-step
- Two-way nesting between the parent and the child configuration
- Forcing :
 - Atmospheric : IFS

- Initial & lateral boundary condition : 1/12° CMEMS operational product (PSY4V3R1)

- Tides : FES2014

• Bathymetry : Emodnet 2018

First baroclinic rossby radius on the eNEATL36 domain Nest area is indicated in black

- Objectives:
 - present a validation of the configuration from a dynamic point of view (SSH, tides, currents).
 - Impact of the nest on the ocean dynamics
- 2 simulations from Jan 2017 to July 2018
- NEST :
- 2 way AGRIF zoom
- drag Boost (Cd X2) in the bay of Mt saint Michel, and in the bay of bristol
- **TWIN** : Same simulation as NEST, but with no zoom (= eNEATL36 simulation) :

Areas (in red) where a X2 Cd boost is applied

Macroscopic validation

M2 amplitude, comparison with FES2014

Tides : validation with FES2014 (Lyard et al 2021)

- NEST : Good agreement with FES (differences < 15cm)
- Underestimation in NEST, overestimation in TWIN = bathymetry change
- Two-way nesting : Continuous tidal solution across the nest boundaries
- SLA along satellite tracks (Jason 3)
- SLA data unfiltered from tides
- Good agreement with satellite SLA for scales > 100km (=satellite effective resolution)
- Small scales filtered by on-track interpolations

SLA spectrums over the zoom area

Nest boundaries

- We need to check if the structures are consistent inside and outside the nest
- Vorticity structures crossing the nest boundary
- Vorticity structures are consistent inside and outside the AGRIF domain
- Balanced motions are transmitted through the nest boundaries

Internal waves (ITW) crossing the nest boundaries

- A well known issue in nested configurations :
 - ITW information should be transmitted across the nest boundaries
 - ITW should not be reflected by the boundaries

1st baroclinic mode current divergence (1/s)

Two way nesting enables internal wave information & balanced motions to be transmitted across the nest boundaries

Resolution impact on kinetic energy temporal scales

Resolution impact on kinetic energy temporal scales

Resolution impact on kinetic energy temporal scales

KE frequency-wavenumber analysis: Bay of Biscay

Submesoscale motions

• Internal gravity waves

- KE frequency-wavenumber spectrums in the Bay of Bicay
- Summer: stronger KE of IGW and submesoscale motions (enhanced stratification)
- Increase of KE in NEST:
 - Primarily due to more resolved submesoscale motions
 - Secondarily, to an increase of the KE of high baroclinic modes

Surface KE frequency-wavenumber spectra in the bay of Biscay for the DJF and JJA seasons

Conclusion & perspectives

Conclusions :

- Realistic oceanic solution for eNEATL36 + BIzoo
- Two-way nesting:
 - enables a continuous model solution across the nest boundaries
 - allow internal wave information and balanced motions to be transmitted across the nest boundaries
- Impact of the kilometric nest:
 - Increase the KE of submesoscale motions and high baroclinic modes in the Bay of Biscay
 - Increase the KE of mesoscale and submesoscale motions in the Mediterranean sea

eNEAT36-BIZoo in the context of CMEMS:

- Improvment of fine scales representation
- available pour IBI-MFC
- multi-grid assim under development at MOI;
- Brexit consequence : change zoom position to include NWS (under test)

Additionnal comments :

- Configuration files and tutorials to reproduce the configuration are available on the IMMERSE github : <u>https://github.com/immerse-project/eNEATL36-AGRIF_Demonstator</u>
- The data is available on demand

Thank you for your attention !