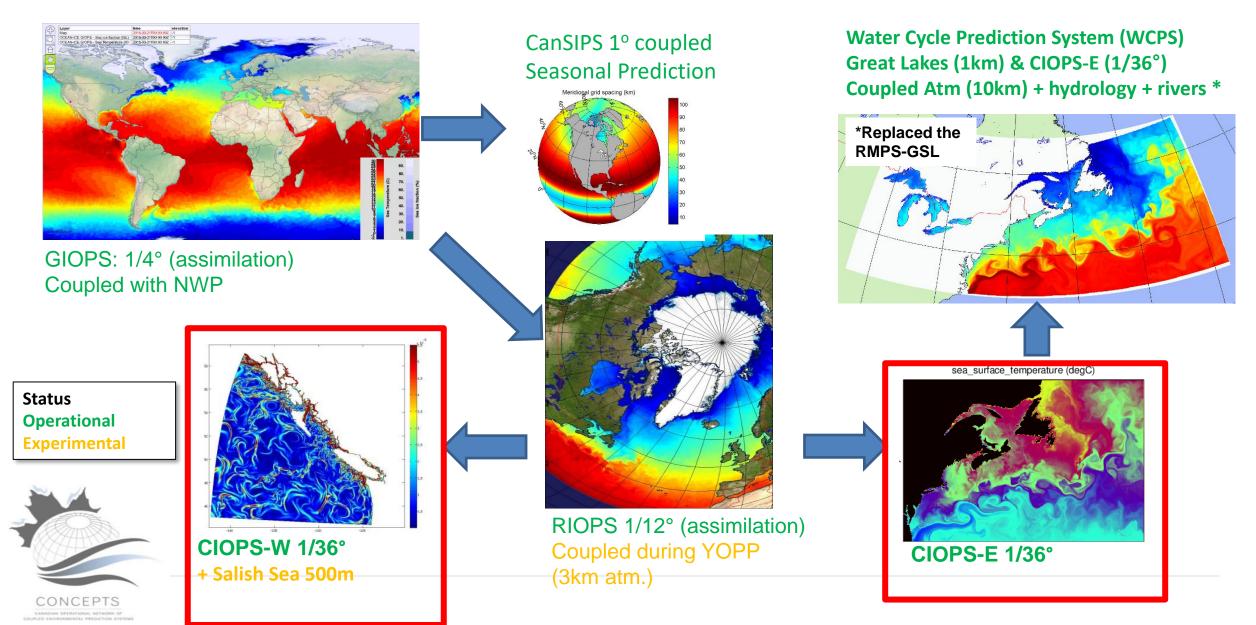


COASTAL PREDICTION AT ECCC – OVERVIEW OF MODELING SYSTEMS & APPLICATIONS

J.-P. Paquin¹, G.C. Smith¹, F. Roy¹, F. Dupont², S. MacDermid^{2,3}, J. Lei⁴, M. Dunphy⁵, Y.L. Shin² & many collaborators!

¹ Division de la recherche en météorologie, ECCC, Canada
² Service métérologique du Canada, ECCC, Canada
³ Bedford Institute of Oceanography, DFO, Canada
⁴ Canadian Hydrographic Service, DFO, Canada
⁵ Institute of Ocean Sciences, DFO, Canada

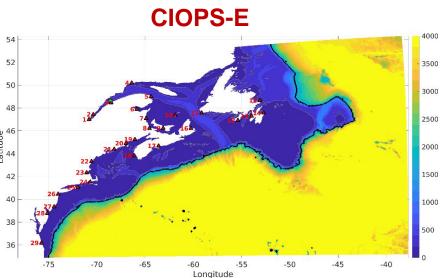
Coastal Ocean Shelf Seas Task Team Workshop, May 2-4 2023



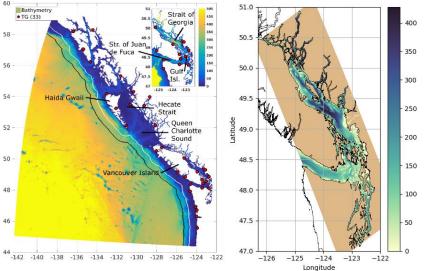
CANADIAN OPERATIONAL NETWORK OF

ECCC ICE-OCEAN FORECASTING WITH MEMO + CICE

CIOPS – TECHNICAL SUMMARY


	CIOPS-E (NWA36)	CIOPS-W (NEP36)	Salish Sea* (Sal500)
Model	NEMO v3.6+ – CICE v4		
System Components	Pseudo-analysis: daily 24h runs Forecasts : 48h forecasts x 4 times per day (00, 06, 12,18Z)		
Horizontal Res.	1/36º ORCA grid (~1.7 – 2.5 km)		500 m
Vertical Levels	100 (∆z=1m from 1 -30m)	75 (∆z=1m from1 - 20m)	40 (1m – sfc; 27m bot.)
Atmospheric forcing	Hourly: Ta, qa, Ua: 1 st prognostic level (~40m) PNM, LW↓, SW↓, Precip		
Atmospheric Blending	HRDPS-RDPS	HRDPS-GDPS	HRDPS
Ocean OBCs	Daily averages: T, S, U, V, SSH from RIOPS		≡ from CIOPS-W (NEP36)
Large-scale constraints	Spectral Nudging 3D T&S offshore toward RIOPS in pseudo-analysis		None
Tidal OBCs	OSU (13 const.)	WebTide (8 const)	Adjusted & obs.
River runoffs	Climatology (130) + 1D St-Laurent	Climatology (Morrisson + Dai & Trenberth)	Climatology + Fraser River

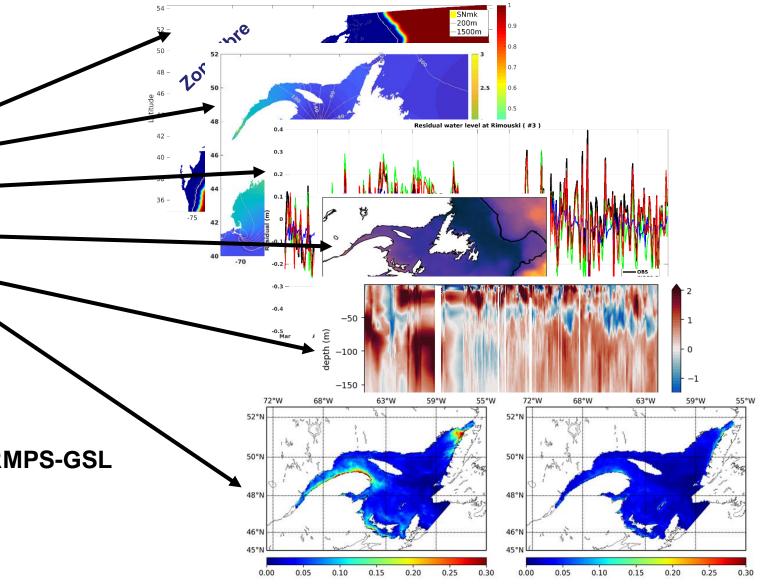
* : tech. transfert from SalishSeaCast via DFO (S. Allen et al.; UBC; https://salishsea.eos.ubc.ca/)


HRDPS : <u>High Resolution Deterministic Prediction System</u>

RDPS : <u>R</u>egional <u>D</u>eterministic <u>P</u>rediction <u>System</u>

GDPS : <u>G</u>lobal <u>D</u>eterministic <u>P</u>rediction <u>System</u>

CIOPS-W


CIOPS EVALUATION

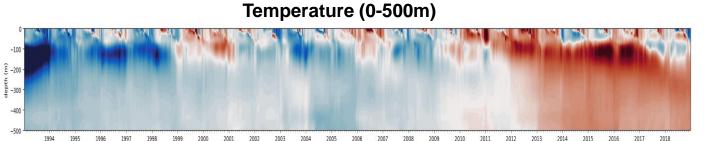
- Spectral nudging
- Tides : amplitude / phase
- Residual water levels
- SST
- T&S profiles
- Sea ice extent
- Drifters

CIOPS improvements over RIOPS & RMPS-GSL

- Tides
- Storm surge
- Water masses in Gulf of St Lawrence

CIOPS-E: Paquin et al. 2023 (*in review*) CIOPS-W : ECCC technical reports

CIOPS-E MULTI-DECADAL SIMULATION (HINDCAST)

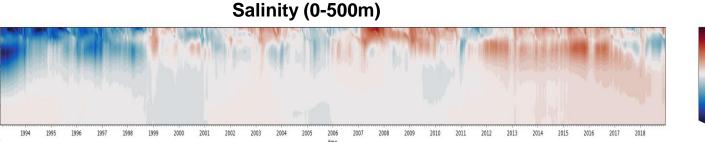

E -200

a -300

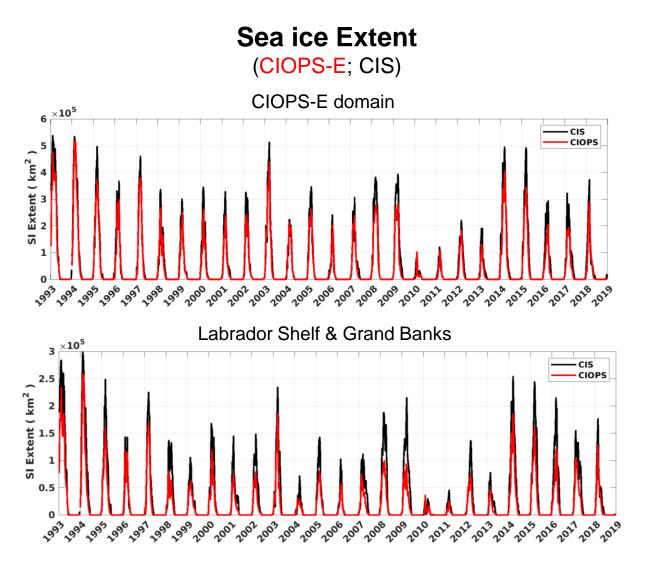
Evaluate system's behavior & statistics

- Interannual variability
- Identify potential drifts
- Extreme events characterisation

Gulf St. Lawrence average anomalies w.r.t. model climatology (1995-2008)


- 0.5 - 0.0 - -0.5

- -1.0 - -1.5


Methodology

- CIOPS-E operational configuration
 - Pseudo-Analysis & Spectral Nudging
- 1993-2018
- OBCs & SN: GLORYS12 (MOi)
- Forcing: ECCC's RDRS (v2.1; Gasset et al. 2021)
 - GEM 10km resolution
 - 1979-2018
 - + LW/SW corrections

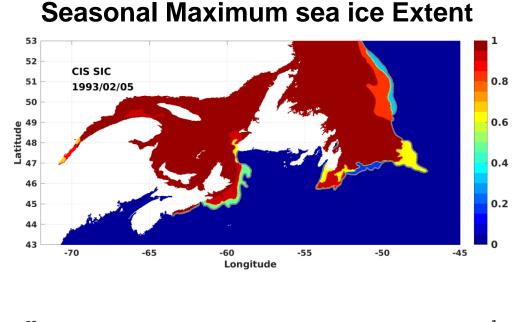
CIOPS-E MULTI-DECADAL SIMULATION

Seasonal Ice Cover

thin, mobile & easy to deform

Measurements

- SI extent : Satellite image analysis
- SI thickness measurements very rare


Canadian Ice Service (CIS) Ice analysis

- Interpretation of satellite images
- SIT estimated using "stage of development"
- Conservative approach for navigation uses

CIOPS-E

- Good representation of interannual variabiliy
- Decreasing SI Extent
- Larger errors over Labrador Shelf & Grand Banks (vs GSL)
 - Underestimation of SI extent & SI Volume

CIOPS-E MULTI-DECADAL SIMULATION

53 52 CIOPS SIC 0.8 51 1993/02/05 50 49 48 47 0.6 0.4 46 0.2 45 44 43 -70 -55 -50 -45 -65 -60 Longitude

Maximum SI Extent for each year (CIS)

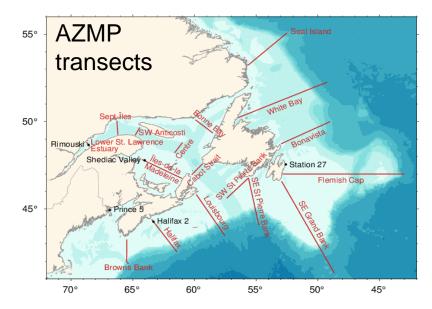
CIS: Polygon-based SI image analysis CIOPS: Modeled SIC (outputs)

- Good spatial correlation
- Resolution differences between Observation estimates vs CIOPS
 - Unconstrained small-scale features
- Local effects (Anticosti, PEI)

FUTURE WORK 1 – HINDCAST

Hindcast

- 1. Water masses
 - Comparison with GLORYS (OBC impacts)
 - Comparison AZMP data & Gliders
 - Comparison with in situ profiles
- 2. Sea Ice (GSL, LS, GB)
 - Sea ice drift & landfast ice representation
- 3. Evaluation of residual water levels, return period & extreme events
- 4. High-frequency variability & circulation regimes in GSL


General

1. Wave-ocean interactions and sensibility

-Actual parameterization / Outputs from wave models / coupling

- 2. Wave ice interactions
- 3. Uncertainty estimates for surface currents

Emergency response & Coast Guards

Other CONCEPTS research projects

- Water level: interannual variability & long-term trends
- Marine heat waves
- Coastal upwellings Nova Scotia

External collaborations & applications

- Contribution souhaitée aux groupes AZMP
- Toxic algea bloom (IML-DFO)
- Snow Crab & lobster (MPO)
- Rightwhale habitat studies (DFO)
- Many others (SWOT, HF Radars, etc.)

MERCI

Links & references

Paquin, J.-P., Roy, F., Smith, G. C., MacDermid, S., Lei, J., Dupont, F., Lu, Y., Taylor, S., St-Onge-Drouin, S., Blanken, H., Dunphy, M., and Soontiens, N.: A new high-resolution Coastal Ice-Ocean Prediction System for the East Coast of Canada, EGUsphere [**preprint**], https://doi.org/10.5194/egusphere-2023-42, 2023.

Gasset, N., Fortin, V., Dimitrijevic, M., Carrera, M., Bilodeau, B., Muncaster, R., Gaborit, É., Roy, G., Pentcheva, N., Bulat, M., Wang, X., Pavlovic, R., Lespinas, F., Khedhaouiria, D., and Mai, J.: A 10 km North American precipitation and land-surface reanalysis based on the GEM atmospheric model, Hydrol. Earth Syst. Sci., 25, 4917–4945, https://doi.org/10.5194/hess-25-4917-2021, 2021.

CIOPS – technical documentation & data access

https://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/tech_notes/technote_ciops-east-200_e.pdf https://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/tech_notes/technote_ciops-east-100_e.pdf https://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/tech_notes/technote_ciops-west-100_e.pdf https://collaboration.cmc.ec.gc.ca/cmc/CMOI/product_guide/docs/tech_notes/technote_ciops-west-100_e.pdf

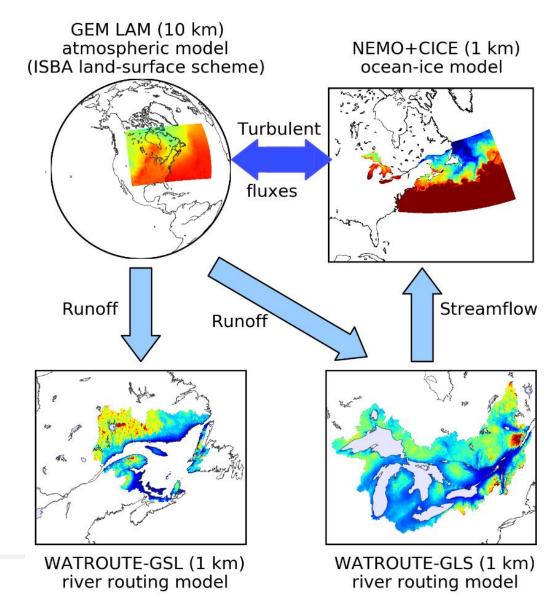
AZMP: <u>https://www.dfo-mpo.gc.ca/science/data-donnees/azmp-pmza/index-eng.html</u> Salish Sea Cast <u>https://salishsea.eos.ubc.ca/</u> Soontiens et al. (2016) <u>https://dx.doi.org/10.1080/07055900.2015.1108899</u> Soontiens & Allen (2017) <u>https://dx.doi.org/10.1016/j.ocemod.2017.02.008</u>

Coastal Ice Ocean Prediction System (CIOPS)

- Two 1/36° (2km) configurations have been developed specifically to provide best estimates of surface currents for Environmental Emergency Response
- Evaluation made in tight EC-DFO collaboration
 - Water level, currents, in situ profiles, drifters
- Spectral nudging to RIOPS analyses offshore
 - Able to constrain SSH mesoscale features and provide more accurate cross-shelf exchanges
- Developing methods to estimate uncertainty in surface currents
 - based on ensembles and unconstrained variability
 - drift error
 - A priori estimates by component (tides, geostrophic, Ekman, ..)

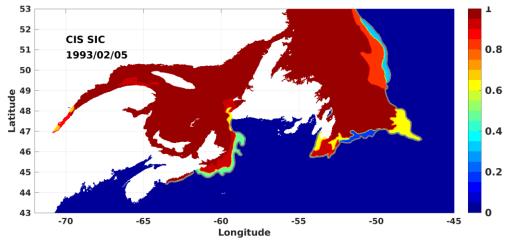
Paquin et al. (in prep)

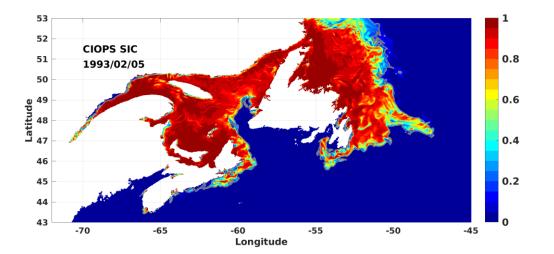
WATER CYCLE PREDICTION SYSTEM

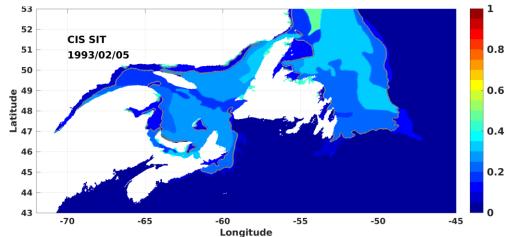

Evaporation from coupled model improves precipitation leading to lower streamflow errors

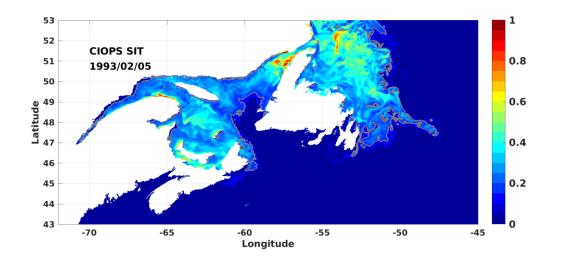
Dynamic ice cover affects fluxes throughout forecasts leading to improved weather forecasts

- Coastal polynya formation
- Rapid ice formation


Coastal upwelling of cold winter waters can affect fog formation - Upwelling not typically represented in SST analyses used in NWP


Durnford et al. (BAMS, 2018) https://doi.org/10.1175/BAMS-D-16-0155.1




CIOPS-E MULTI-DECADAL SIMULATION (HINDCAST)

Seasonal Maximum sea ice Extent

