Port-scale forecast models and relocatable modelling on the Pacific coast of Canada

COSS-TT meeting Montreal

2-4 May 2023

Michael Dunphy, Maxim Krassovski, Andy Lin

Rachel Horwitz, Stephanne Taylor, Hauke Blanken, Simon St-Onge Drouin, Adam Drozdowski

In operations: ECCC's coastal systems

CIOPS-W 1/36 deg

Coastal Ice-**O**cean **P**rediction **S**ystem – **E**ast and **W**est Forced by regional system (RIOPS, 1/12 deg)

- See Jean-Philippe's talk 45min from now

Port Ocean Prediction Systems: east coast

- To support electronic navigation and emergency response (spills, search & rescue, salvage, ...)
 - St Lawrence Estuary
 - See Simon's talk 4h ago
 - Strait of Canso
 - Saint John Harbour
 - See Stephanne's talk tomorrow
- Boundaries from CIOPS-E
- Surface from ECCC's HRDPS 2.5km

Port Ocean Prediction Systems: west coast

West coast port-scale models

- Kitimat
 - 500m & 100m
- South Salish Sea 150m
 - Vancouver Harbour 20m
 - South Fraser 30m
- 3-5x resolution improvement at each step
- Boundaries from CIOPS-W or Salish Sea 500
 - Tides replaced at 500 & 150 m bdys
- Runoff from gauged rivers, else climatology
- Surface from ECCC's HRDPS 2.5km

Kitimat

Strongest freshwater inflow on record (Oct 24, 2017) captured

Kitimat Tides

• Tides generally best represented in KIT500&100

Model			CIOPS-W	КІТ500	KIT100					
Station	Amp (m)	Phase	Tic							
M2 Constituent										
Kitimat	1.659	258.11	0.111	<mark>0.006</mark>	0.044					
Hartley Bay	1.592	256.57	0.097	<mark>0.018</mark>						
S2 Constituent										
Kitimat	0.535	289.10	0.043	<mark>0.003</mark>	0.011					
Hartley Bay	0.512	287.55	0.037	<mark>0.003</mark>						
K1 Constituent										
Kitimat	0.484	255.22	0.008	0.009	<mark>0.005</mark>					
Hartley Bay	0.476	254.92	<mark>0.006</mark>	0.007						
N2 Constituent										
Kitimat	0.341	234.36	0.020	<mark>0.004</mark>	0.006					
Hartley Bay	0.327	232.56	0.020	<mark>0.004</mark>						
O1 Constituent										
Kitimat	0.292	239.16	<mark>0.002</mark>	0.002	<mark>0.002</mark>					
Hartley Bay	0.290	239.04	<mark>0.001</mark>	0.003						

Sea Surface Temperature

• Summer cold bias in CIOPS-W is greatly improved

	Bias (deg)			CRMSE (deg)		
Station	CIOPS-W	KIT500	KIT100	CIOPS-W	KIT500	KIT100
46181	-1.361	<mark>0.055</mark>	0.221	2.51	<mark>1.091</mark>	1.102

Vancouver Harbour 20 m

Horizontal ADCP at Second Narrows

- 7m deep HADCP looking north across the narrows, ~110m span averaged
- SSS150: underestimates tides
- VH20: better, sometimes overestimates tides
- Constituents: more overestimates
- Residual: models capture mean flow
- VH20 looks to be smallest error

South Fraser River 30 m

Surface layer speed (m/s)

Horizontal ADCP at Woodward's Landing

- Average of bins in the range 199-217 m from transducer/shore
 - 30 m model outperforms 150 m model
 - Lower bias, better peak current
 - Phase is good in both models

Summary of fixed-location port models

- Version 1 complete, national review held March 2023
 - "Class 4" evaluation documents to be published later this year
 - Models to run in "demo" mode; operationalization later
- Ongoing efforts to develop version 2
 - Error attribution to guide refinements
 - Uncertainty characterization for end users \rightarrow ensemble runs, sensitivity testing
 - NEMO 4.2+ for wetting & drying
 - Can we develop a hydrological model for better runoff forcing?
 - Can a wave model improve drift prediction?
 - Can we downscale the atmospheric forcing?

12

Relocatable NEMO system

- Not feasible to cover all of Canada's coastline at 100m or better resolution
- Developing system where we use a GUI to specify a downscale box on a map and:
 - Auto-generate grid, bathy, initial conditions and forcing, populate namelists
 - Launch spinup run and ongoing nowcast/forecasts
- Trade off hand-tuned model for fast turnover (minutes to hours)
 - Enables responding to active incidents
- Expect quality/reliability increases as we iterate on the automation
- Similar to SURF-NEMO but more focus on operational / real time turnover

Relocatable test case: drifting ship

- Vessel adrift and fully engulfed in fire (May 2, 2022) in Johnstone Strait (North Vancouver Island)
- Two relocatable grids at ~150 m
 - Top: directly forced by CIOPS-W
 - Bottom: replaced barotropic forcing with FES2022 tides
- Direct downscaling not enough!
 - Value added by tide replacement

