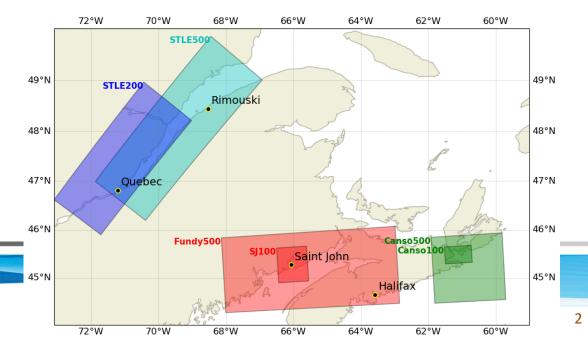
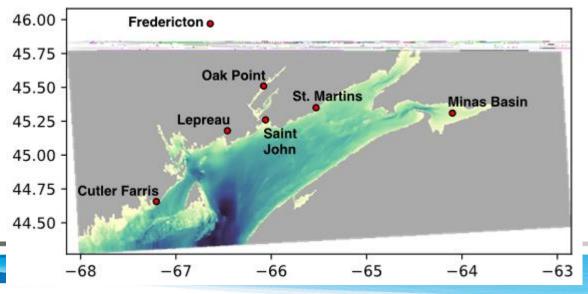
Port Scale Forecast Models on the Atlantic Coast of Canada

Coastal Ocean and Shelf Seas Task Team Meeting May 3rd 2023, Montreal, QC

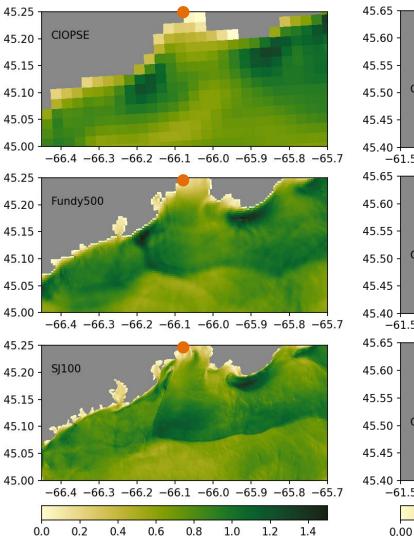
Stephanne Taylor¹, Adam Drozdowski¹, Simon St-Onge Drouin², Rachel Horwitz¹, Michael Dunphy³, Maxim Krassovski³, Hauke Blanken³

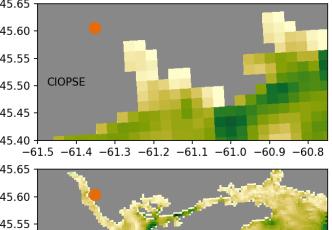

Fisheries and Oceans Canada 1: Bedford Institute of Oceanography, Dartmouth, Nova Scotia 2: Maurice Lamontagne Institute, Mont-Joli, Quebec 3: Institute of Ocean Sciences, Sidney, British Columbia


Domain and Configuration

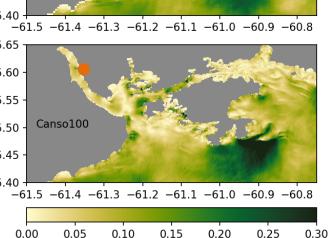
- Downscaled circulation models developed for six Canadian ports using common tools, setup, configuration and codebase (NEMO 3.6+)
 - Pacific coast models already presented by Michael Dunphy
 - St. Lawrence Estuary already presented by Simon St. Onge
 - Port of Saint John and Strait of Canso presented here
- Two level system: 500m outer domain provides OBC for 100m inner domain
- Forcing mostly from ECCC systems
 - OBC from CIOPS-E (~2 km)
 - Tidal forcing from WebTide (SJ)
 - Atmosphere from HRDPS (~2.5 km)
 - Saint John river from gauge data

Domain and Configuration


- Downscaled circulation models developed for six Canadian ports using common tools, setup, configuration and codebase (NEMO 3.6+)
 - Pacific coast models already presented by Michael Dunphy
 - St. Lawrence Estuary already presented by Simon St. Onge
 - Port of Saint John and Strait of Canso presented here
- Two level system: 500m outer domain provides OBC for 100m inner domain
- Forcing mostly from ECCC systems
 - OBC from CIOPS-E (~2 km)
 - Tidal forcing from WebTide (SJ)
 - Atmosphere from HRDPS (~2.5 km)
 - Saint John river from gauge data



Motivation


- Built to provide data to feed enavigation and emergency response applications
 - Near-surface processes key
 - Surface currents need to be skillful
- Existing operational models cannot resolve fine details in coastline, harbour geometry
- Features in speed sharpen and strengthen as resolution increases

Surface Speed on 2020-06-01 00Z for Saint John and Canso

Canso500

Currents near Canaport Oil Terminal, Saint John

- Canaport is a relatively high risk location; area needs reliable near surface currents
- Currents not well captured by CIOPS-E
- SJ100 closest match to observations

0 | Observed SJ100-HC Fundv500-F 45.30 SJ Tide 45.25 -Gauge ADCP 45.20 Canaport Spence 2 45.15 -66.1-66.0-65.9Depth (m) -0.2 0 0.2 -0.2 0 0.2 -0.2 0 0.2 0 0.2 0.2 Ellipse Size (m/s) Ellipse Size (m/s) Ellipse Size (m/s) Ellipse Size (m/s)

Vertical Profile of M2 for Saintlohn-598 ADCP 13m

Forecasting Setup

- System provides 48 hour forecasts 4 x daily
- Follows the CIOPS-E and HRDPS forecasting schedule
 - No need to adjust or manipulate forcing data from models
- Need to provide forecast data for the Saint John river gauge data
 - Outflow from river has large impact on harbour surface circulation
 - River boundary at Oak Point (~ 40 km inland) has a mixed tidal-fluvial signal
 - Use NS Tides to provide a forecast by supplying upstream (Fredericton) and downstream (Saint John harbour) signals

Forecast Surge Water Level

46.00

45.75

45.50

45.25

45.00

44.75

44.50

50

Cutler Farris

-67

~~

-68

- SJ100 has smallest bias and CRMSE of all three models
- Statistics at Saint John do not significantly degrade over 48 h
- Bias and CRMSE at Cutler Farris comparable to Saint John

stdev(fcst - hcst)

40

Saint John 00Z RMSE

20

Forecast lead hour

hcst

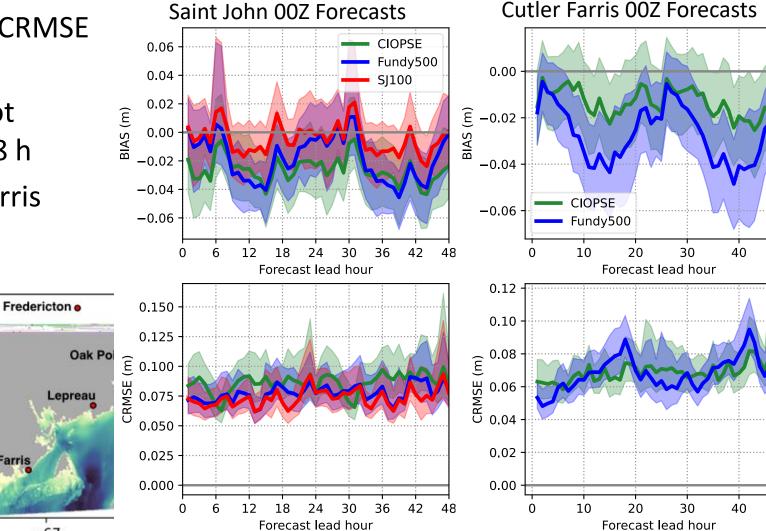
30

0.14

0.12

0.10

80.0 ^L 80.0


0.04

0.02

0.00

Λ

10

7

50

50

Summary

- Downscaling coastal operational systems to port-scale is a viable approach
- Increased resolution results in more accurate near-surface currents
- Forecasts produced by these systems do not have substantial error growth over the forecast period
- Development process was lengthy; lots of possible science to be done shortly

Thank you!

stephanne.taylor@dfo-mpo.gc.ca