OceanPredict COSS-TT meeting, Montréal, 2 May 2023

The importance of the land-sea breeze in driving coastal dynamics of the southern Benguela upwelling system

Giles Fearon¹, Steven Herbette², Gildas Cambon², Jennifer Veitch^{1,3}, Jan-Olaf Meynecke⁴, and Marcello Vichi⁵

¹Egagasini Node, South African Environmental Observation Network, Cape Town, South Africa.

- ² Laboratoire d'Oc'eanographie Physique et Spatiale (LOPS), IUEM, University of Brest CNRS IRD Ifremer, France.
- ³ Nansen-Tutu Centre, Marine Research Institute, University of Cape Town, Department of Oceanography, Cape Town, South Africa.
- ⁴ Griffith Climate Change Response Program, Griffith University, Southport, Qld, Australia.

⁵ Marine and Antarctic Research centre for Innovation and Sustainability (MARIS), University of Cape Town, Department of Oceanography, Cape Town, South Africa.

The context

- St Helena Bay is the most productive region of the southern Benguela upwelling ٠ system
- Physics and productivity is largely understood within the context of the ٠ upwelling-relaxation cycle - driven by wind variability with a time-scale of days to weeks
- The land-sea breeze has a time-scale of less than a day, so is it important in the ٠ predictability of the system?

onal Research Foundation

Observation Netwo

The forcing mechanism

• When latitude $\varphi = 30^{\circ}$ N/S, $f = 2\Omega \sin \varphi = \Omega$ i.e. inertial frequency is diurnal \Rightarrow resonant with the land-sea breeze

Adapted from Kämpf and Chapman (2016)

The forcing mechanism

- When latitude $\varphi = 30^{\circ}$ N/S, $f = 2\Omega \sin \varphi = \Omega$ i.e. inertial frequency is diurnal \Rightarrow resonant with the land-sea breeze
- Ocean response is largely driven by the amplitude of the diurnal anticyclonic rotary component of the wind stress (τ^{ac0})

Adapted from Kämpf and Chapman (2016)

The forcing mechanism

- When latitude $\varphi = 30^{\circ}$ N/S, $f = 2\Omega \sin \varphi = \Omega$ i.e. inertial frequency is diurnal \Rightarrow resonant with the land-sea breeze
- Ocean response is largely driven by the amplitude of the diurnal anticyclonic rotary component of the wind stress (τ^{ac0})
- Locally forced vertical current structure can be produced with a simple 1D model (Fearon et al., 2020)

Adapted from Kämpf and Chapman (2016)

Impact on the mean state

upwelling conditions

Impact on the mean state

upwelling conditions

Impact on the mean state

relaxation conditions _daily+ac forcing τ^{daily} forcing $\tau^{\text{daily}+\text{ac}}$ forcing - τ^{daily} forcing a) 31°S 31°S 31°S 30' 30' 30' 32°S 32°S 32°S 30' 30' 30' 33°S 33°S 33°S 30' 30' 30' 34⁰5 16°E ^{30'} 17°E ^{30'} 18°E ^{30'} 19°E 17°E ^{30'} 18°E ^{30'} 19°E 0 **b)**₁₀ 20 30 Depth (m) 40 50 60 70 80 90 100 60 55 50 45 40 35 30 25 20 15 10 5 060 55 50 45 40 35 30 25 20 15 10 5 060 55 50 45 40 35 30 25 20 15 10 5 0 Distance offshore (km) Distance offshore (km) Distance offshore (km) 15 10 11 12 13 14 16 17 18 -1 0 Temperature (° C) Δ Temperature (° C) **c)** 10 2. 20 (E 30 0 40 Depth 50 0 60 70 80 90 100 60 55 50 45 40 35 30 25 20 15 10 5 060 55 50 45 40 35 30 25 20 15 10 5 060 55 50 45 40 35 30 25 20 15 10 5

 55 50 45 40 35 30 25 20 15 10 5
 060 55 50 45 40 35 30 25 20 15 10 5
 060 55 50 45 40 35 30 25 20 15 10 5
 0

 Distance offshore (km)
 Distance offshore (km)
 Distance offshore (km)
 Distance offshore (km)

											_
-0.3	-0.2	-0.1	0	0.1	0.2	0.3	0.4	-0.05	0	0.05	
v (m s ⁻¹)								Δ v (m s ⁻¹)			

Summary

- St Helena Bay is a hotspot for eliciting diurnal-inertial oscillations and associated vertical mixing
- It seems likely that the land-sea breeze plays an important role in the enhanced productivity of the St Helena Bay
- The modification of the vertical water column structure impacts lower frequency upwelling and circulation
- Land-sea breeze effects should be considered in the development of operational forecast and climate scale models of this region, and in general other regions near 30° N/S

Summary

- St Helena Bay is a hotspot for eliciting diurnal-inertial oscillations and associated vertical mixing
- It seems likely that the land-sea breeze plays an important role in the enhanced productivity of the St Helena Bay
- The modification of the vertical water column structure impacts lower frequency upwelling and circulation
- Land-sea breeze effects should be considered in the development of operational forecast and climate scale models of this region, and in general other regions near 30° N/S

Foundation

Thank you!

g.fearon@saeon.nrf.ac.za

Follow us: @Department of Environmental Affairs

Forestry, Fisheries and the Environment

Follow us: @EnvironmentZA

Science and Innovation

Follow us: EnvironmentZA

www.dffe.gov.za

