Dynamics paradigm of geostrophic cross－isobath transport （GCT）over a highly variable shelf topographic regime

Jianping GAN and Chiwing HUI

Center for Ocean Research in Hong Kong and Macau，Department of Ocean Science and
Department of Mathematics，The Hong Kong University of Science and Technology

Geostrophic cross-isobath transport (GCT) dynamics

For small Rossby number,

$$
U * \frac{f}{H^{2}} \frac{\partial H}{\partial x *}=\nabla \times\left(\frac{\tau_{b}}{\rho_{0} H}\right)-\nabla \times\left(\frac{\tau_{s}}{\rho_{0} H}\right)
$$

$$
\begin{gathered}
U^{*}=\frac{1}{f}\left[H \frac{\nabla \times \tau_{b}-\nabla \times \tau_{s}}{\rho_{0}}\left(\frac{\partial H}{\partial x *}\right)^{-1}\right. \\
\text { Cross-isobath } \\
\text { transort }
\end{gathered}+\underbrace{\left.\frac{\left(\tau_{s y^{*}}-\tau_{b y^{*}}\right)}{\rho_{0}}\right]}_{\text {Geostrophic Transport }}
$$

Two-dimensional Upwelling Dynamics

Variable shelf topography in the northern South China Sea

Scientific questions:

-what is the 3 -dimensional response to upwelling-favorable wind forcing over the unique varying topography in the different regions of the NSCS?
-what is the inter-connection and transitional effect among the neighboring regions along the changing of topography?
-what is the underlying flow-topography dynamics in different topographic regimes?

Characteristic response

Field
measurement

Model

$\mathrm{T}(10 \mathrm{~m})$

Characteristic along- and cross-isobath transport

Along-shore inter-connection
 Remote effect vs. Local effect

The yellow diamond represents the start point of calculating the correlation. The colorbar indicates the correlation coefficient
along -isobath geostrophic balance transport/crossisobath transport cross-isobath geostrophic balance/along-isobath transport

5/19/2023

Dynamic understanding: barotropic GCT

For low Rossby number, barotropic cross-isobath transport U^{*}

GCT upslope transport

Along-isobath momentum equation:

$$
\begin{aligned}
& u^{*} \text { is upslope transport }
\end{aligned}
$$

Geostrophic dominant

Source of along-isobath pressure gradient force in GCT upslope transport
along the 75 m isobath

$$
\begin{aligned}
& \overbrace{-\frac{1}{\rho_{0}} \overline{P_{y^{*}}} D}^{\text {PGF }_{y^{*}}} \\
& =\overbrace{-\frac{D^{2}}{D_{x *}} J\left(\chi, \frac{1}{D}\right)}^{\mathrm{JEBAR}}+\overbrace{\frac{H}{H_{x *}} \int_{-H}^{\eta}(u \xi)_{x_{*}}+(v \xi)_{y^{*}} d z}^{\mathrm{ADV}_{\xi}}+\overbrace{\frac{H}{H_{x *}} \nabla \times \frac{\tau_{b}-\tau_{s}}{\rho_{0}}}^{\text {ETA }}+\overbrace{\frac{H}{H_{x *}} \nabla \times \int_{-H}^{\eta} \boldsymbol{v}_{t} d z}^{\text {RSC }} \\
& +\overbrace{\frac{H \eta_{y *}}{H_{x *}}\left(u u_{x *}+v u_{y *}\right)^{s}+\frac{H \eta_{x *}}{H_{x} *}\left(u v_{x *}+v v_{y *}\right)^{s}-\frac{H}{H_{x *} \rho_{0}} J\left(P^{S}, \eta\right)-\frac{\eta_{y *} \chi_{x *}}{D_{x *}}-\frac{H f}{H_{x *}} \frac{\partial \eta}{\partial t}} \\
& +\overbrace{\frac{H}{H_{x *}} \int_{-H}^{\eta} \beta v^{N} d z}^{\text {BETA }}+\overbrace{H\left(u v_{x *}+v v_{y *}\right)^{b}}^{\text {BHADV }}+\overbrace{\frac{H}{H_{x *}} \nabla \times \int_{-H}^{\eta} \boldsymbol{h v i s c} d z}^{\text {HVISC }}
\end{aligned}
$$

Summary

1. GCT dominates and intensifies in the topographic regime with highly variable shelf (steep, concave and widened shelf);
2. GCT is mainly induced by JEBAR effect baroclinically and bottom stress curl barotropically.
