A low intrusive method to simulate buoyant effluent
plume in “Coastal Hydrodynamics Models”
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/ Simulating buoyant water discharge on the ocean floor

Coastal hydrodynamic models are not designed to manage buoyant plume and Non-Hydrostatic models are to

heavy for environmental studies. Then, practically, a “near field model ” is coupled with a “far field model”.
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Quasi-non-hydrostatic modelling compared to Quasi-non-hydrostatic modelling applied to
hydrostatic and Non-hydrostatic ones realistic case : IPANEMA BEACH outfall (Brazil).

Idealized case configuration

A release of 10 m3/s distributed on an outfall of 30 meters width and 900 m length at a depth of 60 meters was Figure 1 : Configuration of the outfall
simulated by the Hydrostatic, Quasi-Non-Hydrostatic and Non-Hydrostatic models. The discharge temperature is in Ipanema Bay
set at 26.9°C and the salinity at 0 PSU. The density of the stratified environment verifies the following equation: N Rio de Janeiro
p(z) = 1.16 * 10-2 * z + 1024.8 with z varying from 0 to -60 m, corresponding to a temperature (resp. salinity) ﬁ
varying linearly from 11.5°C (resp. 35.55 PSU) near the bottom to 14.5°C (resp. 33.35 PSU) at the surface. A tracer
with an arbitrary concentration of 1 was associated to the release. A channel of 1024 by 512 by 64 grid with 3 m M:S,Tk':% Dye experiments have been conducted around the
horizontal and less than 1 m vertical resolution with flat bottom bathymetry is used to model all experiments. sewage outfall of Ipanema Beach during stratified and
3km PSt unstratified condition to evaluate three commonly used
. near field models (UM3, RSB and CORMIX) (Carvalho et
distributed outfalls al 2002)
vertical profiles of density E ertical sections . . .
(row D) : E/rows A,B,C) § o . A Quasi Non Hydrostatic Coastal Hydrodynamic model
: H T e Difwser™ T (MARS3D, Ax =3m,Az =0.45m)  simulated the
: ’ e ‘- 4. ] | dynamics observed during the fields experiments
v Gl S (effluent flow rates and densities , far field current
| A Pumping stations and dye Injection sites : . o .
Non-Hydrostatic ) Quasi-Non-Hydrostatic ) Hydrostatic Primitive Equation | \ Samslegpoints e C% Strength and dlrECtlon, Strahﬁcahon"' ) '

A ' 14.5 Profiling points
-10 | | 14.0
-20 135 o
% . I % o *§ - Sea surface
o g . 100
—40 125 & . I
_50 |:\[f‘*/‘“| 12.0 - - : ';:\,__\ I Figure 2 During winter experiment
WA \:,1
-300 -200 -100 O 100 200 300 —-300 -200 -100 O 100 200 300 —300 -200 -100 O 100 200 300 e é . . when the water column was
Sanee e e A e peo e e e £ | [ unstratified. The plume reaches the
B o= 8 9L - - 0.018 £° .
_10 fe=#A32 ZE=0.BIN........eoeeecececeeeeeeescreneaeeeee e eeneeenenenensnaeeed 8 surface and is advected by a mean
he=26.1 0.015 § o
—20 - e=22.7n he=20.6m 6,015 E §,2 = current.
5 BMZ28.6m. ..o |ersnsssa s g a ~. |
B 770 BEBRAM v e 1 GOCEEESEREE SRUERS— ; - 0.009 & | R e
—40 - 0.006 § 25 Outfall 200 “250 ;0,\\*\
s 'W‘%ﬂm Sea Floor I
—50 A 1 i - 0.003
l l L (/- 0.000 .
~300 -200 -100 0 100 200 300 —300 -200 -100 O 100 200 300 —300 -200 —-100 O 100 200 300 QNH In-Situ RSB UM3 CORMIX
0 Distance from the outfall (m) Distance from the outfall (m) Distance from the outfall (m) .00 (MUIH)
c G e S, | 172 | 130 139 152 140
7 150 Zm| 270m [ 270m |270m |[239m |227m
_ —207 125 h, | 202m | 23.0m 234 m 14.6 m 9.1 m
EL 10 1.00 g Table a
—407 o7 s s e+, €@ SUTACE . . .
504 0.50 Figure 3 : During summer experiment
0.25 10
0 | e | . I when the water column was strongly
~-150 -100 —50 0 50 100 150150 -100 —50 0 50 100 150150 -100 —50 0 50 100 150 ) . . e .
D Distance frc.)m the outfall (m) Distance from the outfall (m) Distance from t!'xe outfall (m) . 1000 Stratlﬁ ed . The pI U me U pd I'aﬁ: |S Ilm |ted
Y T N  —— i o by the ambient buoyancy gradient. The
2 0005 < plume remain confined under the
g 000 coeooma . 3 thermocline and is less diluted than in
5 0 | ' g - : L ‘ winter.
£ 0.002 2 ~__ 2 ™ 3
0.001 - : ] ; P w o~ 20m T
0.000 = he:f?z'?m . | | ).n he=2:Ol.6m n | | | = he=2I(§5.1m = | - IOutfaII . o 10 m» - o
-60 -50 -40 -30 -20 -10 ®0 -50 -40 -30 -20 -10 -0 -50 —-40 -30 -20 -10 0 0 00 w o w0 % Sea Floor g~
Depth (m) Depth (m) Depth (m)

\—Y—’ \—Y—’ QNH | In- RSB | UM3 &)SI;’I;/HX The minimum dilution (S,,=C,/C,,..,) in the plume,

the altitude of the minimum dilution Z, and the

Non-Hydrostatic and Quasi Non Hydrostatic modelling Sm | 57.3 59 38 40 39

S A Hydrostatic  modelling leads to Z. 1 113m | 9.0m | 8.6m | 13.1m| 11.9 m width of the plume h, at the near field boundary
gvershoots Zli htl be?ore oscillatin a;md stabF;Iizin unrealistic vertical velocities and a he | 7.56m | 55m | 9.7m | 14.9m| 54 m observed or computed by near field and QNH
shtly g & strong overestimation of effluent Table b

around 30m deep. models are in agreement (table a,b)

mixing.
QNH is designed to manage both the near and far
field in a single code without any significant
additional calculation costs.
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Coupling with a near-field approach is
necessary.
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