Impact of Marine Heatwaves in the coastal ocean

- an open question -
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With increasingly intense marine heatwaves affecting nearshore regions,
foundation species are coming under increasing stress, To better understand
their impacts, we examine responses of critical, habitat-forming foundation
species (macroalgae, seagrass, corals) to marine heatwaves in 1322 shallow
coastal areas located across 85 marine ecoregions. We find compelling evi-

How the shifting spectrum of environmental variability
will impact species, communities, and ecosystems
broadly depends on life history traits and adaptation
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Marine Heatwaves (MHWS) — detection and features

Peak date — Temperature
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Different baselines convey different

levels of changing risk for marine species.

MARINE HEATWAVES: DUELLING DEFINITIONS

Assessing spikes of extreme ocean temperatures using different baselines* paints two different pictures for the
future as the climate warms. Coastal communities need to know which definition is being used so they can plan.

Fixed baseline
Measuring heat relative to historical temperatures makes sense for tracking coral
bleaching, for example, but says little about patterns of future extremes.
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Defining marine heatwaves relative to increasing average temperatures helps
resource managers to distinguish temporary changes and long-term trends. Marine
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*Baselines and thresholds are illustrative only; seasonal variations are not considered for simplicity
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Both the fixed and detrended baseline methods have merits.
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Considered as coastal oceans: English Channel,
Bay of Biscay, and NW Mediterranean Sea




Contrasted dynamical systems —
macrotidal / mesotidal dynamics

Extended Regions of Freshwater
Influence — 3 main rivers
(Gironde, Loire, Seine)

Fine scale dynamics linked with
ocean-atmosphere interactions
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Context

Marine Heatwaves (MHWS) in the Bay of Biscay and the English Channel

Observed an increasing activity of surface Marine Heatwaves in the region
(increasing number and duration)
Simon et al., 2023

However ...

, What are the impacts in the water column linked with the contrasted coastal dynamics ?
. -crucial for living ecosystems —

J

And in 2022 and 2023 - how was the MHW activity during those warm recent years ?
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In situ temperature observations between 1997 and 2023 (SOMLIT netwok - https://www.somlit.fr/mysomlit/)



https://www.somlit.fr/mysomlit/

MHWs detection - from which dataset ?

Remotely sensed and in situ observations Numerical simulations
OISST product MARC simulation based on MARS3D model
Optimum Interpolation Sea Surface Temperature https://marc.ifremer.fr

Reynolds et al., 2007; Huang et al., 2020
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At the surface ... Summer MHW:s

Summer MHWs properties in the Northeast Atlantic
(41-55 °N, 18 °W-9.5 °E)
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At the surface ... Summer MHW:s

Summer MHWs properties in the Northeast Atlantic
(41-55 °N, 18 °W-9.5 °E)
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A contrasted spatial distribution - two singular years: 2022 and 2023

From model simulations ...
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e 2022 - higher activity in the English Channel
e 2023 - higher activity in the Bay of Biscay

... but strong spatial variability linked with coastal processes (e.g. rivers, tides, bathymetry constraints)



What about the temperature in the water column ?

In the English Channel ...
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What about the temperature in the water column ?

o
12 | In the Bay of Biscay ...
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MesuRho station (COAST-HF network) — Rhéne river plume




Marine Heatwaves in recent years

Surface (satellite) and subsurface (in situ) MHWs
total duration and maximal intensity in summer

d) CALANQUES summer MHW-imax e) MEDES summer MHW-imax
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Vertical structure of Marine Heatwaves

Vertical structures of MHWs under coastal processes:

Assessing conditions at the depth of essential

Fig. 2 | Vertical structures of MHWs. a-d Possible vertical structures of MHWs
near the shelf, including: “shallow” MHWSs which do not penetrate below the mixed
layer (a); “Bottom” intensified events due to a downwelling thermocline near the
bottom, resulting, for example, from alongshore winds, as illustrated for the
Southern Hemisphere (b); “Extended” profiles from the surface to the bottom due to
intrusion of warm eddies or western boundary meanders into the shelf (¢) or due to
warm alongshore advection (d). e-h ‘Temporal evolution of subsurface MHWs
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associated with: changes in upper-ocean mixing for shallow events (e); propagation
of oceanic Rossby waves causing variations in thermocline depth (f); persistence of
deep anomalies with no surface signature due to mixed layer shoaling (g); and re-

emergence of deep anomalies at the surface when the mixed layer deepens (h). The
subsurface structure of MHWSs depends on the processes involved in their forma-

tion, as well as the region’s stratification and circulation.

Capotondi et al. (2024)
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Example in 2022 ...

One of the strongest ever Mass Mortality Event in gorgonians: the role of sporadic wind driven up- and
downwelling under persistent regional surface MHW

Exposure days

(b) (c) Mean % recent affected colonies
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Estaque et al. (2023) Global Change Biology



Concluding remarks

Needs to shift from Marine Heatwaves (MHWs) as a surface temperature anomaly
to a process to be defined following the impact of MHWs on benthic and pelagic ecosystems.

Combining complementary methodologies is essential.

Dedicated to drivers and impacts.

Garrabou et al., 2022
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