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Introduction

e High-resolution significant wave height (SWH):
* wave energy project planning, ship navigation, marine structure design etc.

* Dynamical downscaling:
* physics based numerical models
* Time consuming for fine scales

e Statistical downscaling:
e Statistical relationships

* Time efficient
* machine learning, in particular, convolutional neural network (CNN)
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Introduction: Statistical downscaling

* Classifications based on predictor and r r r e
target variables: ' ' e F O\

 Self-variable: e.g., SWH to SWH
* Cross-variable: e.g., wind to SWH

* Training framework:

* Perfect: predictor data from coarsened
data of regional models ol Multiple variables -> SWH

* Imperfect: predictor data from sources ?(’)arf (1;232?532180200%; (Wu et al., 2024)
other than the above (useful for
downscaling physical fields from 51001

50.75 1

publicly available global dataset) s0.501

-0.300
0275 €

o250# Buoy data->spatial SWH
02257 Random forest & linear

Lack of study on statistical spatial wave { °20¢ regression (Chen et al., 2021)

downscaling: with self-variable approach under |
imperfect framework, with the cross-variable »
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Introduction: Statistical downscaling

* Neural network (NN): like a function F that maps the input x to target y.
The goal is to find coefficients (weights) in the function y = F(x) such that the
distance between prediction y and target y (loss function) is minimized.

Input x + m Prediction y ‘ bl |7 — |
P Y (Loss function)

Update with a rate (learning rate)
 This process is repeated a few times through the entire training dataset (epoch).

25 —— —rmse(r1) —rmse(r2) —rmse(r3)
200 0105 How to reduce
1) £ ol instability in NN
giz % 0'0022 model prediction?
10,0 2 0,085 What about traditional
- \ g o008 ~ deterministic model
e e e 90 s o like linear regression?
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Aim of the research

* We proposes an ensemble CNN-based model and a linear regression model
for spatial SWH downscaling from publicly available global ERAS5 dataset to
regional model output. Both self-variable and cross-variable (using wind) SWH
downscaling are explored. Specifically, the following questions are addressed:

* (i) How effectively can an ensemble method reduce the prediction instability of CNN-
based models for spatial SWH downscaling?

* (ii) Does the nonlinear CNN-based model outperform the linear regression model in
spatial wave downscaling with both self-variable and cross-variable approaches?
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Material and methods

* Total data length: default 11680 500 1000 1500 2000
samples (3 hourly), each corresponds .-
to a 2D physical field at certain time. _—

 75% (8760 samples) for training, 25%  +™;
for testing. 44N

43°N

Data Variables Spatial Spatial _—
source Resolution grids coverage /
SWH(m)  0.5°x0.5°  12x12 2018-2021 26°E 0B 32°E ME 36°E  38E  40E 42

10-m wind U  0.25°x0.25°  24x24  2018-2021
Bathymetry of the Black Sea. P1, P2 and P3 are in

and V (m/s) shallow area less than 50 m, with water depths of

SWH (m)  0.025°x0.025° 240x240 2018-2021 10, 20 and 40 m, respectively, and P4 has the highest
SWH in the domain during the selected period.
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Material and methods

* Super-resolution residual network (SRResNet), based on Ledig et al. (2017)

* Ensemble method: average epoch predictions after training loss is
approximately stabilized, e.g., average predictions from the last few epochs.
* No need to train multiple NNs
* Directly applicable to other NNs

* Loss function: f-prediction, y-target (ground truth)

* Lg = If — vl
* Input:
* self-variable: low-resolution SWH data; cross-variable: low-resolution wind components
U&YV

* normalized using a range cover the maximum & minimum values of the variables

* Output: high resolution data (SWH)
* Scale factor: self-variable: 20 (12*12->240*240 grid points); cross-variable 10.
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Material and methods

* Multivariate Linear regression (MLR):

* Estimates the linear relationship between two sets of variables; the target set
has more than one variable, e.g., given N; predictor variables at Ny times X, to
predict N, (Np > 1) target variables at the corresponding N times Y.

¢ yl] = WijiO + lexil + szxl-z ot WNIjxiNI ) with Xio = 1, [ = 1, ...,NT, ] = 1, ...,NO
* In matrix form: ¥ = Xw, where w 1s the array of unknown coefficients.
* For 2D spatial downscaling, N; / N, = no. of low/high-resolution grid points
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Material and methods

e Evaluation metrics:

For all test dataset:

Mean absolute error (MAE): %ZJT l¥j — fjl, f- prediction, y- target, T-sample No.

2
Root mean square error (RMSE):\/%Z]T-(yj — fj)

Time average, 15t percentile and 99" percentile of the test data, e.g.,:

1 _ = . L :
e MAE m = NZ{-V |V; — fi|, N-total number of grid points in a sample, overbar-time average

RMSE_m = \/%2{." i)

 Compare with direct interpolation methods e.g., nearest neighbor, radial basis

function (RBF) interpolation with a linear kernel (good at extrapolation).
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Results: ensemble vs original SRResNet

== SR_run0 SR runl -- SR _run2 — SR_en_run0 SR_en_runl — SR_en_run2

0.06 A
0.10{@ _ (b)
o £
5 = 0.04- A
© 0.091, i o X
E 4 \\ ’[\‘ ,‘ Fady 'I \‘ \ﬂ[ . A g “
- —\'-(\/ Ny A\I \ ""l’)'%""’\&,-—% é 0.02 -

» Ensemble method reduces instability of NN model predictions and
improves performance in terms of global RMSE.
(select the last 20 epochs from run0 as ensemble to present the results )
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Epoch Epoch
Comparison of error metrics between SRResNet and the ensemble SRResNet for multiple runs
in self-variable SWH downscaling. For the ensemble model, the error value at an epoc
number is obtained by using the averaged prediction from that epoch to the last ep rash




Results: downscaled SWH at selected times

Self-variable downscaled SWH at four times (a storm period)
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RMSE (m) RMSE (m)

P2

Results: downscaled SWH at selected locations

e Self-variable downscaled SWH at P1-P4

® Reference — SR_en — MLR — RBFlinear — Nearest

(b)

RMSE (m)
0.117 0.145 0.703
0.119 0.159 0.755
0.145 0.219 0.380
0.314 0.172 0.586

RMSE (m)

0.775
0.885
0.393
0.590

e Cross-variable downscaled SWH

® Reference — SR_en — MLR

(b)
1.00 A

= 0.75 4

Q ¢ Q ) Q % Q
9 Q :)9 N 30 Q 30 N ’0\' Q ’0\'\ ’01-)’ Q
A\ AN ANVT AT AL AL

DT RMSE (m)  RMSE (m)

| p1] 0.255 0.417
0.190 0.358 @
0.360 0.744 hereon
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Results: distribution of downscaled SWH

Distribution of self-variable downscaled Distribution of cross-variable downscaled
SWH at all grid points and locations P1-P4 SWH at all grid points and locations P1-P4
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» Ensemble SRResNet and MLR have similar performance in self-variable
SWH downscaling in the Black Sea;

» In cross-variable downscaling, the former still works, while MLR fails. @ héreon
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Results: Self-variable vs cross-variable

MLR

* Scale factor (self-variable): &% —————==] E_
* Performance with a scale of 40 u% o % -
close to that with 20. g 01 £01

* A scale of 80 gives smaller E 0.0 E 0.0-

global RMSE than that of cross- (na% Lo 55 PR, P, o, o>

. . «(‘» ’3‘3’9{(\'& ﬂ(& <
variable approach with a scale .
Result sensitivity to scale factors for self-variable wave downscaling.

of 10 (0.225 m, ensemble).

Scales 40 and 80 are coarsened ERA5 data.

e Self-variable vs cross-variable:

* Likely relationship between low- and high-resolution SWH is approximately linear,
whereas that between low-resolution wind and high-resolution SWH is nonlinear.

* For application: self-variable approach when possible.
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summary

* The ensemble approach
significantly reduces the prediction
instability of the neural network

* Ensemble SRResNet and MLR have
similar performance in self-variable
SWH downscaling in the Black Sea;

* In cross-variable downscaling, the
former still works, while the latter
fails.
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Self-variable downscaled SWH at four times (a storm period)
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