

A deep learning approach for coastal downscaling: the northern Adriatic Sea case-study

Federica Adobbati, Lorenzo Bonin, Gianpiero Cossarini, Valeria Di Biagio, Fabio Giordano, Luca Manzoni, Stefano Querin

COSS-TT meeting, June 18th, 2025

Problem

Copernicus data are the state of the art at the Mediterranean level, but are not designed to catch **coastal processes** (e.g. river discharge in the ocean). This creates the need for **downscaling** applications, e.g. for forecast and reanalysis tasks in the area

A possible solution: high-resolution nested reanalysis

The CADEAU project provided a **high resolution reanalysis** of the northern Adriatic Sea **physics and biogeochemistry** (2006-2017), produced with a numerical simulation. The system is closely linked with Copernicus Marine data, from which it takes initial and boundary conditions.

A possible solution: high-resolution nested reanalysis

The CADEAU project provided a **high resolution reanalysis** of the northern Adriatic Sea **physics and biogeochemistry** (2006-2017), produced with a numerical simulation. The system is closely linked with Copernicus Marine data, from which it takes initial and boundary conditions.

Zoom on the northern coast

In the high resolution map we can observe **coastal features** not present in the Copernicus map. **River discharges** have a strong influence on the variability of the area (ROFI area - region of freshwater influence).

Example of chlorophyll from the reanalysis 2006-2017

Drawback: Numerical simulations have a high computational cost!

A deep learning approach for super-resolution

We can train a **neural network** with low and high resolution example pairs, so that it learns to generalize the super resolution process on new low-resolution data

Considered variables:

- chlorophyll
- nitrate
- phosphate
- salinity
- temperature

Extensive presentation of this work can be found in: "A deep learning approach for coastal downscaling: the northern Adriatic Sea case-study". Federica Adobbati, Lorenzo Bonin, Gianpiero Cossarini, Valeria Di Biagio, Fabio Giordano, Luca Manzoni, Stefano Querin. Accepted in Ocean Modelling 6 (2025)

The architecture

- Architecture: MLP connected with a U-net
- Input: array of river discharges
 (MLP) and low resolution
 Copernicus Marine data (U-net)
 - Output: high resolution field
 - Training period: 2006-2017

Different kinds of setups: multi vs single variable approach

The RMSE is smaller in the case of single variable training. In the multivariate approach, variables with different spatial patterns have a negative influence on each other

Validation against observations

We divide the area into **sub-basins** based on the **bathymetry** and the **river** presence.

For each of them we compare the Copernicus Marine data and the output of the neural network with observations.

In particular:

For the test set period (2006-2017):

 We compare the 2 models against a climatology built upon in situ data

For 2023:

- We compare the 2 models against the climatology built upon in situ data (same as above)
- For chlorophyll and temperature, we compare with satellite data

Validation in the test set period (2006 - 2017)

Model vs in situ climatology

Bias for winter chlorophyll in the test set period.

- The U-net learned to reproduce the CADEAU values.
- 2. While Copernicus Marine tends to always underestimate the mean value, CADEAU and the output of the U-net slightly overestimate with respect to the in situ data.
- 3. The best improvements are in the north and central area

Validation on 2023 data

Bias of Copernicus Marine and of the output of the U-net for winter chlorophyll data with respect to the satellite data

Standard deviation of the values included in each sub-basin for Copernicus Marine data, the output of the U-net and the satellite data for chlorophyll in winter.

The highest variability is in the satellite data, whereas Copernicus Marine data exhibit the lowest variability

Summary: methods for super-resolution

- Classical interpolation methods
- Nested numerical simulation (e. g. CADEAU/ MEDEAF webpage), used for forecast and for reanalysis

 Deep learning methods (learning from numerical reanalysis), used for forecast

Comparison between the methods

Nested simulations capitalize on our knowledge about hydrodynamic circulation and biogeochemical fluxes, BUT

- They require time and computational resources at every run
- For the forecast, observational data are ignored

Deep learning methods usually do not explicitly model physics of biogeochemistry, BUT

- Once they are trained, they require less time and computational resources
- They learned from the reanalysis, where observation have been integrated with data assimilation methods

Comparison between the methods: An example

The structures produced with traditional methods are in general more defined, possibly because the neural network was trained on averages of 5 days

Ongoing work - Application of the neural network for operational forecast

The neural network can be used either to produce directly high resolution forecast or as improved initial condition of the numerical simulation

Conclusion and future perspectives

Developed work:

- We developed a downscaling method based on a U-net architecture and applied it to the northern Adriatic Sea area
- Once the neural network is trained, the super-resolution task is performed in < 1s, significantly faster than the numerical simulation

Ongoing work:

• The super-resolution tool can be integrated into the numerical simulation in order to improve its quality (better ICs) and reduce the overall computational cost (shorter spinup)

Future perspectives:

- We plan to test new methods based on neural networks (transformers, diffusion models)
- We plan to integrate observations into the training to improve the quality of the reconstruction

Conclusion and future perspectives

Developed work:

- We developed a downscaling method based on a U-net architecture and applied it to the northern Adriatic Sea area
- Once the neural network is trained, the super-resolution task is performed in < 1s, significantly faster than the numerical simulation

Ongoing work:

• The super-resolution tool can be integrated into the numerical simulation in order to improve its quality (better ICs) and reduce the overall computational cost (shorter spinup)

Future perspectives:

- We plan to test new methods based on neural networks (transformers, diffusion models)
- We plan to integrate observations into the training to improve the quality of the reconstruction

Thank you!!