

Study of salinity in the Casamance estuary: modelling and observations

Birane NDOM (LOCEAN/LOSEC), Siny Ndoye (UAM, Dakar), Bamol Ali Sow (LOSEC, Ziguinchor), Vincent ECHEVIN(LOCEAN)

Characteristics of the Casamance estuary

- located in south Senegal, ~350 km long
- Mangrove
- rice paddy fields
- shrimp fisheries
- Tourism
- rainy season in june-october

Characteristics of the Casamance estuary

Dry season (November-July): inverse estuary

Rainy season (August-Oct): positive estuary

~35 psu

Objectives of the study

General objective:

Study the salinity variability in Casamance and understand the physical mechanisms using numerical modeling and available observations

Specifically:

- 1) Caracterize the tidal hydrodynamics
- 2) Observe the salinity vertical and longitudinal structure in west Casamance
- 3) Model the salinity variations and study its different forcings

CROCO model configuration

- west part of Casamance
- 1 km (parent grid), 200 m (AGRIF zoom)
- 10 vertical levels
- tidal forcing : TPXO7 global model
 Egbert & Erofeeva, 2002

- open boundary forcing: WOA
- Wind : Quikscat climatology 2000-2009
- Idealized canal at landward extremity of estuary (rectilinear, constant depth=4m)

Methodology: bathymetric data

RVO bathymetry (2012) between the mouth and Ziguinchor (400 m between 2 transverse lines) (Brak et al., 2013)

Bathymetry from the GEBCO database Resolution: ~400 m

Tidal elevation

- Calibration of the model logarithmic bottom friction to fit observations
- Model/data good agreement at Karabane and "shelf"
- Underestimation of model sea level and strong asymmetry at Ziguinchor

Tidal currents

Evaluation of zonal (longitudinal) currents in Ziguinchor (21/11/2021; Machu & Capet, pers. com.)

- Temporal evolution and vertical structure of the current close to the observations
- underestimation of the current by ~ 50 %

Lagrangian circulation

Lagrangian residual current (computed from the initial/final position of particles)

- Lagrangian particles launched at each grid point between January and May
- Residual current much weaker (~0.5 cm/s) than Eulerian (~ 5 cm/s) due to Stokes drift
- Complex pattern: offshoreward near river mouth, landward in estuary

Flushing time of the estuary (without runoff)

- Renewal time (Tf) estimated from the concentration of passive tracer in the estuary
- Tf~ 600 days, consistent with Lagrangian current magnitude : U~0.5 cm/s => T=L/U~1 year

Renewal time of the estuary

Tides in the Casamance estuary: A modeling study

Birane Ndom a,b, Siny Ndoye , Bamol Ali Sow b, Vincent Echevin a,*

^a Laboratoire d'Océanographie et de Climatologie: Expérimentation et Approches numériques (LOCEAN), Sorbonne Université, CNRS/IRD/MNHN/SU, Paris, France

^b Laboratoire d'Océanographie, des Sciences de l'Environnement et du Climat (LOSEC), Université Assane Seck, Ziguinchor, Senegal

^c UFR Sciences et Technologies Avancées (STA), Université Amadou Mahtar Mbow (UAM), Dakar, Senegal

In situ salinity analysis: Karabane-Pointe Saint George radial

- Longitudinal length: ~28 km
- Boat trips: ~ once a month since december 2022
- Parameters: salinity, temperature, fluorescence, oxygen (surface/bottom)
- Team: B. Ndom, Y. Badji, A. Diouf, I. Ba (LOSEC); V. Echevin (LOCEAN),
 T. Brochier (UMMISCO); X. Capet (LOCEAN), E. Machu (LOPS) funding:
 ANR SOLAB, IRD

the salinity gradient increases seaward, characteristic of a positive estuary (oct and dec)

Dictance [Km]

isohaline slope indicated typical circulation of a positive estuary

Distance [Km]

the seaward decrease in salinity is characteristic of an negative estuary

isohaline slope indicated typical circulation of an inverse estuary

CROCO model configuration

- west part of Casamance
- 1 km (parent grid), 200 m (AGRIF zoom)
- 10 vertical levels
- tidal forcing : TPXO7 global model
 Egbert & Erofeeva, 2002

- open boundary forcing: WOA
- atmospheric forcing : ERA5 (bulk, hourly)
- GloFAS Runoff
- Idealized canal at landward extremity of estuary (rectilinear, constant depth=4m)

Modeling of salinity: role of water discharge at the end of the canal sorrouse

- GLOFAS: hydrological model forced by ERA5 precipitation (11 km resolution, daily)
- Discharge point in GLOFAS: water flux into water body: lake, sea, estuary
 => Discharge (Qc) near Ziguinchor = point A + other discharge points neglected
- Discharge of salted water: S= Sc
- Year 2015 is simulated

Influence of discharge (Qc) on salinity during rainy season

- Sc=25 psu!
- GLOFAS discharge at point A too low=> multiplied by 3-4
- Salinity decrease consistent with observations with Qc~3-4 GLOFAS
- Salinity decrease earlier and faster
 with Qc~ 4 x GLOFAS

Salinity evolution during the dry season

- Salinity weaker than observations
- underestimated salinity increase during the dry season
- Model evaporation~ observations (Dacosta, 1989)
 - => advection is biased (residual current) in estuary

Salinity evolution during the dry season: role of the idealized canal

Influence of the canal depth (hc) on salinity at Ziguinchor

- Qc = 3 GloFAS
- slight change of salinity slope with hc=2m (June)
- strong increase of salinity at the start of rainy season (July-August) due to seaward transport of the canal salty waters

=> major role of topography in canal and in unrepresented eastern part of the estuary 18

Comparison of model salinity with longitudinal sections

- Model qualitatively reproduces the observed salinity and longitudinal gradients
- Model is able to simulate the estuary negative and positive conditions

Conclusions and perspectives

- The model allows a realistic representation of the tidal elevation but underestimates tidal currents
- The tidal Lagrangian circulation is slow (0.5 cm/s) leading to a renewal time of 600 days
- The model is able to simulate salinity inverse and normal conditions during 2015
- A realistic salinity is simulated during the rainy season with a discharge 3-4 times larger than GLOFAS and with a brackish salinity of 25 psu
- The salinity increase during the dry season is underestimated pointing to the need to improve the model upstream of the canal
- Perspectives: to extend the model domain using new bathymetric data (collaboration LIENSs lab.)

Thank you for your attention!

