Coupled multi-grid stochastic modelling and data assimilation and their impact on regional/coastal forecasting in the Bay of Biscay

Pierre De Mey-Frémaux (DR CNRS, LEGOS, Toulouse, France)
Vassilios Vervatis (Prof., NK U. Athens, Greece)
Bénédicte Lemieux-Dudon (Contractor, LAERO, Toulouse, France)

Talk under GNU General Public License v3.0

10th meeting of the OceanPredict Coastal Ocean and Shelf Seas Task Team Ifremer, Brest, 24-26 September 2024

Copernicus Marine Service / Service Evolution projects

SCRUM (2016-18) – Stochastic Coastal/Regional Uncertainty Modelling

Focus: Regional Ensemble consistency verification, Ensemble data assimilation

- Vervatis, V.D., P. De Mey-Frémaux, et al., 2021a: Assessment of a regional physicalbiogeochemical stochastic ocean model. Part 1: Ensemble generation. Ocean Modelling, 160, 101781.
- Vervatis, V.D., P. De Mey-Frémaux, et al., 2021b: Assessment of a regional physical biogeochemical stochastic ocean model. Part 2: Empirical consistency. Ocean Modelling, 160, 101770.
- **SCRUM2** (2018-20) Stochastic Coastal/Regional Uncertainty Modelling II Focus: Use of atmospheric Ensembles, age of errors, probabilistic forecasting
 - Vervatis, V.D., P. De Mey-Frémaux, et al., 2025: Regional ocean model uncertainties using stochastic parameterizations and a global atmospheric ensemble. Ocean Modelling, 194.
- MultiCast (2022-24) Stochastic multi-grid ocean forecasting Focus: Ensemble-based multiresolution regional/coastal forecasting, Ensemble-based multigrid data assimilation
 - De Mey-Frémaux, P., V. Vervatis, B. Lemieux-Dudon, 2025: Coupled multi-grid stochastic modelling and data assimilation and their impact on regional/coastal forecasting in the Bay of Biscay. In prep.

Dual-grid stochastic model generation in MultiCast

- Stochastic models provide consistent Ensembles, which are in turn used in (1) Ensemble DA, and
 (2) probabilistic forecast skill metrics
- Stochastic models are built from deterministic models: BISCAY36 parent + nested 1/108° child domain, both using NEMO 4.2, with AGRIF coupling
- SPPT-AR1 surface wind vector perturbations
- Ensembles: 20 (7) members + CONTROL member
- Two periods in February and June 2017
- Free or assimilated Ensemble runs
- 30-day medium-range Ensemble forecasts.

Dual-grid stochastic model classes

- The MultiCast project was funded under the Copernicus Marine Service.
- We address target classes of operational protocols >>> enhancing fine-scale forecasts in certain key areas.
- We use probabilistic scores to assess the forecast skill of stochastic models.

Classes of Target Operational Protocols (TOPs) addressed

Class	Class definition	Stochastic approach
TOP-0	 1-way nesting, stochastic parent Parent d.o.f's from intrinsic parent errors Child d.o.f's only from downscaling 	 Wind perturbed in parent
TOP-1	 1-way nesting, stochastic parent & child Parent d.o.f's from intrinsic parent errors Child d.o.f's both from downscaling and intrinsic child errors 	 Wind perturbed in parent and child
TOP-2	 2-way nesting, stochastic parent & child Parent d.o.f's both from upscaling and intrinsic parent errors Child d.o.f's both from downscaling and intrinsic child errors 	 Wind perturbed in parent and child

Parent-child ensemble spread – winter

Probabilistic skill scores

Brier score associated to event $\mathbf{E}: X \leq x_t$ being given a parameter X and a threshold x_t :

$$ext{BS}(ext{x}_{ ext{t}}) = rac{1}{K} \sum_{k=1}^{K} \left(P_k^f(x_t) - O_k(x_t)
ight)^2$$

Having K realizations of E, the Brier score compares:

- o P^f_k the probability predicted by the stochastic model / Ensemble members (i=1,...,N) $P^f_k\left(X^f_{i,k} \leq x_t
 ight) = p_i = rac{i}{N} \in [0,1]$
- o O_k the occurrence of **E** captured by the verifying $O_k(X_k^o \le x_t) = 0 \,\, {
 m or} \,\, 1$ observations.

DRPS (*Discrete Ranked Probability Score*): extension of the BS over several thresholds

$$< ext{DRPS} > = rac{1}{L} \sum_{l=1}^{L} \, ext{BS}(x_t^l) = rac{1}{L} \sum_{l=1}^{L} \, rac{1}{K} \sum_{k=1}^{K} \left(P_k^f(x_t^l) - O_k(x_t^l)
ight)^2$$

CRPS (Continuous Ranked probability Score): extension to a "continuous" range of thresholds

$$< ext{CRPS}>=\int_{-\infty}^{+\infty} \mathrm{d}\,x_t\, \mathrm{BS}(x_t) = \int_{-\infty}^{+\infty} \mathrm{d}\,x_t\, rac{1}{K} \sum_{k=1}^K \left(P_k^f(x_t) - O_k(x_t)
ight)^2$$

Probabilistic skill scores: the Hersbach (2000) CRPS decomposition

(Based on the Murphy, 1973 Brier score decomposition)

An effective Ensemble-based prediction system should have the following skills:

- Reliability: statistical consistency between the probability predicted by the Ensemble and the frequency of occurrence captured by the verifying observations.
- Resolution: ability of the EPS to perform better than a climatological forecast.

$$\begin{aligned} \overline{\text{CRPS}} &= \overline{\text{Reli}} + \overline{\text{CRPS_pot}} \\ \overline{\text{CRPS_pot}} &= -\overline{\text{Reso}} + \overline{\text{Uncert}} \end{aligned}$$

- The smaller the better, except Resolution.
- Uncertainty only depends on the verifying observations (base rate variance).

Synthetic observations: quasi-reliable validation framework

QRTB (Quasi-Reliable Test-Bed) – split single Ensemble:

- Synthetic verifying observations generated from one or several randomly drawn Ensemble member(s) at observation locations using observation operator H and noisified using observational error covariance matrix R.
- Run fcst skill assessment on rest of Ensemble.
- High Reliability skills expected
 - → Under QRTB, scores will mostly discriminate **Resolution**.

Reliability diagram

Useful property: CRPS sampling error: When the Ensemble is reliable, the ratio between the expected CRPS of the m-member-based forecast and the expected score if the Ensemble was of infinite size is 1+1/m (Richardson, Q. J. R. Meteorol. Soc., 2001).

- → E.g., we can expect +/-5% CRPS error with 20 members within QRTB.
- drawn fro → High Reliability (as expected) and Resolution skills
 - → Fair, "linear" Reliability diagram, within some sampling errors

SCRUM2 upw

- Brier (bing
- Synthetic drawn from

SST CRPS for dual-grid stochastic models (free = no assim)

TOP-2: 2-way nesting with stochastic parent & child

child is two-way coupled to the parent

Multigrid DA configurations

- We now test the impact of various DA options in the parent/child system, in TOP-2 class stochastic models only (TOP-2 = 2-way nesting with stochastic parent & child).
- In the DA runs, we use multigrid stochastic EnKF (stochastic models, Ensembles and covariances are multigrid).
- Quasi-reliable mode (HR SST, SLA maps).
- DA options tested:
 - TOP-2.1: Observations in parent only, covariances in parent only
 - TOP-2.2: Observations in parent only, multigrid covariances
 - TOP-2.3: Observations in child only, covariances in child only
 - TOP-2.4: Observations in child only, multigrid covariances
 - TOP-2.5: Observations in parent + child, multigrid covariances

Assimilate SST -- Members 601 and 602 on Jan 21, 2017

SST increments

TOP-2.1: Observations in parent only, covariances in parent only

TOP-2.2: Observations in parent only, covariances in parent + child

TOP-2.5: Observations in parent + child, covariances in parent + child

→ When assimilating SST in both the parent and child, and using multigrid covariances, the gain is higher and the level of detail is better.

Dual-grid SST CRPS -- assimilated (SST) vs. free -- winter

Assimilation on Jan 21, 2017, then free run

QRTB

crror for 7 members ~.014

- → SST skill enhanced when assimilating SST on both grids in 2-way coupled config, both for the child and the parent slightly above CRPS sampling error as of Richardson (2001).
- → Open ocean: benefit seems to be retained to O(1wk+)
- → Coastal strip: the benefit is not demonstrated.

TOP-2: 2-way nesting with stochastic parent & child

TOP-2.0: Free run

TOP-2.5: Assimilate in both grids

SST trends in TOP-2.5 over various ranges in the child domain

- → In June, SST trends predominantly atmosphere-driven (trade winds driving coastal upwelling)
- → In Feb, SST trends driven by the sluggish IPC mesoscale field

Dual-grid SST CRPS -- assimilated (SLA) vs. free -- summer

Assimilation on June 11, 2017, then free run

QRTB

cror for 7 members ~.014

- → Expected lack of SST forecast skill enhancement in open ocean
- → Significant SST forecast skill enhancement in coastal strip (upwelling couples SST and SSH there)

TOP-2: 2-way nesting with stochastic parent & child

TOP-2.0: Free run

TOP-2.5: Assimilate in both grids

Child grid SLA trends -- assimilated(SLA) vs. free -- summer

TOP-2.5 SLA trend *rms* minus TOP-2.0 SLA trend *rms* as a function of forecast range

→ TOP-2.5 forecast skill vastly improved for SLA over TOP-2.0 up to O(2 weeks) in child grid

Conclusions so far on the MultiCast project

- Project finished in July, 2024. A paper is being written.
- We assessed the forecasting skill by (1) trends analysis, (2) being better than the climatological forecast (= CRPS Resolution term)
- The 2-way nested stochastic models with assimilation on both grids often led to forecast skill enhancement, in both the parent and child grids, with respect to other cases tested
 - Objective skill enhancement wrt. Richardson's criterion
 - Fcst skill enhancement dependent on observability of model errors (in particular when using surface observations), f(seasonal regime)
- The cross-grid covariances calculated from a 2-way nested Ensemble add definition and variance on top of single-grid covariances
- In a 2-way nested system where the parent assimilates, the benefit of the child also assimilating observations is felt for both the child and the parent.