

Persistent coastal temperature biases in kmscale climate models due to unresolved oceanic tidal mixing

Audrey Delpech (LOPS), Anne-Marie Tréguier (LOPS), Louis Marié (LOPS), Rohit Ghosh (AWI), Malcolm J. Roberts (Met Office)

Coastal Oceans and Shelf Seas Task Team International Meeting Brest. 17-20 June 2025

- Coastal regions are crucial for climate system and ecosystem services
- But they are very often badly represented in global ocean and climate models (Holt et al. 2017).
- Climate models are valuable to predict the mid- and long-term evolution of the coastal oceans.
- Newly developed km-scale climate models offer capabilities for better representing regional and local scale climate and downscaling climate information at the scale needed for adaptation policies.
- → Necessity to evaluate the capabilities of these models in coastal regions.
- 1) What are the dominant processes underlying sea surface temperature biases on the shelf in km-scale climate models?
- 2) What are the implications for the local ocean-atmosphere coupled system?

Outline

- 1. Introduction
- 2. Data and Methods
 - a. Climate models and simulations
 - b. Observations
- 3. Results
 - a. Sea surface temperature biases on the shelves in climate models
 - b. Correlation with barotropic tidal mixing fronts
 - c. Impact on the atmospheric temperature biases
- 4. Discussion and Conclusion: Towards a parameterization of barotropic tidal mixing in climate models?

2. Data and Methods

a. Climate models and simulations

Data and Methods

HighResMIP simulation protocol

- Coupled ocean-atmosphere-sea ice-land
- Ocean nominal resolution < 20km

a. Climate models and simulations

HighResMIP simulation protocol

- Coupled ocean-atmosphere-sea ice-land
- Ocean nominal resolution < 20km

b. Comparison with observational datasets

a. Climate models and simulations

Institution	Model	Ocean Model	Ocean Resolution	Atmosphere Model	Atmosphere Resolution	Reference
Met Office (UK)	HadGEM-GC31-HH	NEMO-GO6.0	8 km	UM-GA7.1	50 km	M. J. Roberts et al. (2019)
NCAR (USA)	CESM1-CAM5-SE-HR	POP2	8 km	CAM5.2	25 km	Chang et al. (2020)
EC-Earth (EU)	EC-Earth3P-HR	NEMO	20 km	IFS	30 km	Haarsma et al. (2020) Moreno-Chamarro et al. (2025)
BCC (China)	BCC-CSM2-HR	MOM4	20 km	BCC-AGCM3	40 km	Wu et al. (2020)
AWI (Germany)	AWI-EERIE-IFS-FESOM	FESOM	6 km	IFS	15 km	Ghosh et al. (2025)
CNRM (France)	CNRM-CM6-1-HR	NEMO	20 km	ARPEGE3.6	50 km	Voldoire et al. (2019)
CMCC (Italy)	CMCC-CM2-VHR4	NEMO3.6	20 km	CAM4	20 km	Scoccimarro et al. (2022)
ECMWF (Europe)	ECMWF-IFS-HR	NEMO3.4	20 km	IFS	30 km	C. D. Roberts et al. (2018)

→ 8 simulations from different models and institutions

= independent models

3. Results

- a. Sea surface temperature biases on the shelves in climate models
- b. Correlation with barotropic tidal mixing fronts
- c. Impact on the atmospheric temperature biases

a. Sea surface temperature biases on the shelves in climate models

Introduction

EC-Earth

(EU)

BCC-CSM2-HR

3. Results

- a. Sea surface temperature biases on the shelves in climate models
- b. Correlation with barotropic tidal mixing fronts
- c. Impact on the atmospheric temperature biases

b. Correlation with tidal mixing fronts

What are the regions dominated by barotropic tidal mixing?

Balance between seasonal stratification and tidal mixing: Pingree and Griffiths (1978) ratio

Assuming C_p , C_d , Q, alpha, rho constant R ~ Simpson-Hunter (1974) parameter

R >> 1 Stratification dominates over mixing

R << 1 Mixing dominates over stratification

R ~ 1 Mixing fronts

b. Correlation with tidal mixing fronts

b. Correlation with tidal mixing fronts

Northeastern American Shelf

လူ

Suumer SST bias

Tidal mixing-Yellow Sea dominated regions

3. Results

- a. Sea surface temperature biases on the shelves in climate models
- b. Correlation with barotropic tidal mixing fronts
- c. Impact on the atmospheric temperature biases

c. Impact on atmospheric temperature biases

c. Impact on atmospheric temperature biases

c. Impact on atmospheric temperature biases

→ Missing barotropic tidal mixing not only induce oceanic temperature biases but also atmospheric temperature biases.

! Air temperature biases over land may be underestimated because of averaged cold biases over mountainous regions.

4. Discussion and Conclusion

Summary

- There exists a correlation between mean surface temperature biases (both oceanic and atmospheric) and regions marked by tidal mixing fronts ($S_h << 1$).
- These biases are systematic in all HighResMIP models (not shown: also in previous CMIP-like models)
- → necessity of parameterizing barotropic tidal mixing in climate models for an accurate representation of temperatures in coastal regions.

Next steps / ongoing work:

- Investigate the impact of this missing tidal mixing on the representation of
 - temperature variance
 - temperature extremes
 - other meteorological variables: wind, precipitations.
- Develop a parameterization based on bottom TKE injection to account for the missing mixing

Introduction

Thank You!

audrey.delpech@cnrs.fr

Delpech et al. (2024). Impact of ocean mesoscale in ocean model biases: an assessment of eddy-rich coupled climate simulations. https://doi.org/10.5281/zenodo.14802628

Delpech et al. (2025). Persistent coastal temperature biases in km-scale climate models due to unresolved oceanic tidal mixing. Submitted to *Geophysical Research Letter*. <u>Preprint</u>

Conclusion and Perspectives

Backup slides

a. Sea surface temperature biases on the shelves in climate models

multi-model mean bias (=model-observations) of winter SST on the shelves (1985-2014)

Northeastern American Shelf

75°W 70°W 65°W 60°W 55°W 50°W

Northwestern European Shelf

Yellow Sea

