

On the effect of grid resolutions and mixing schemes on vertical dynamics in coastal ocean models: a case-study in a shallow, semi-enclosed basin (northern Adriatic Sea)

Fabio Giordano^{1,2}; Stefano Querin¹, Stefano Salon¹

¹ National Institute of Oceanography and Applied Geophysics — OGS

² University of Trieste

Ocean Predict COSS-TT meeting June 18th 2025, Ifremer, Plouzané

Summary

- 1. Introduction: study area and mesoscale
- 2. Methods: model and setups
- 3. Results: validation and mesoscale dynamics
- 4. Conclusions

Northern Adriatic Sea (NAS)

Marginal sea, continental shelf, shallow (~ 50 m)

Northernmost part of the Mediterranean

Physical, biological and socio-economic relevance

Credits: EMODnet bathymetry

OGS

1. Introduction

1. Introduction

Freshwater fluxes

NAS as ROFI: freshwater from many rivers (e.g. Po)

Freshwater fluxes

NAS as ROFI: *freshwater* from many rivers (e.g. Po)

Air-sea fluxes

Wind regime (Bora):

dense water

formation

OGS 1. Introduction

Freshwater fluxes

NAS as ROFI: freshwater from many rivers (e.g. Po)

Air-sea fluxes

Wind regime (Bora):

dense water

formation

NAS as a coastal modelling laboratory

Mesoscale and stratification

Rossby radius of deformation: length scale

$$R_{Ro} = \frac{1}{f} \sqrt{\frac{\Delta \rho}{\rho_0} gh}$$

Average surface circulation, from July 12 to July 14 2018 as simulated by the MITgcm

1. Introduction

Mesoscale and stratification

Rossby radius of deformation: length scale

$$R_{Ro} = \frac{1}{f} \sqrt{\frac{\Delta \rho}{\rho_0} gh}$$

Function of stratification ($\Delta \rho$)

Contains most of oceans'
kinetic energy
Contributes to transport
tracers and water masses

Need for high resolution modelling

Average surface circulation, from July 12 to July 14 2018 as simulated by the MITgcm

Goal

Investigate role of vertical physics (grid & mixing) in ROFI models:

- 1. Comparison with data \Rightarrow water column properties (e.g. stratification)
- 2. Study of the mesoscale field \Rightarrow important for transport (e.g. nutrients, pollutants)

Improvement in prediction skill

Modelling tool: MITgcm

- •1/128° horizontal resolution
- non hydrostatic
- •COSMO/ICON atmospheric forcing (2.2 km)
- CMS boundary conditions
- •19 river outputs

2. Methods

Simulation setups

4 NAS 5-year hindcasts:

- a) 2 vertical grids ("old" & "new")
- b) 2 vertical mixing schemes (KPP & GGL)

	KPP	GGL
"old": 27 levels	old + KPP	old + GGL
"new": 59 levels	new + KPP	new + GGL

- •1/128° horizontal resolution
- non hydrostatic
- •COSMO/ICON atmospheric forcing (2.2 km)
- CMS boundary conditions
- •19 river outputs

Comparison with observations: satellite

Comparison with observations: satellite

Systematic cold bias (summer)

Reduced by high-res (old+KPP, old+GGL

→ new+KPP, new+GGL)

Sea surface temperature bias

Comparison with observations: satellite

Systematic cold bias (summer)

Reduced by high-res (old+KPP, old+GGL → new+KPP, new+GGL)

Reduced by different scheme (KPP → GGL)

old+GGL better than new+KPP

Sea surface temperature bias

2 datasets

Vertical profiles of temperature and salinity

coastal band (< 12 nm) ⇒
stress test for model skill</pre>

Credits: Adriatic LNG, ISPRA

Salinity improvement due to high-res

	Temperature bias [°C]	Temperature RMSD [°C]	Salinity bias []	Salinity RMSD []
old+KPP	0.553		1.108	2.162
old+GGL	0.404		1.171	2.083
new+KPP	0.420		0.827	1.759
new+GGL	0.295		0.986	1.754

Salinity

improvement due to high-res

Temperature

large improvement around thermocline depths

old+GGL ≃ new+KPP

	Temperature bias [°C]	Temperature RMSD [°C]	Salinity bias []	Salinity RMSD []
old+KPP	0.553	2.121	1.108	2.162
old+GGL	0.404	1.718	1.171	2.083
new+KPP	0.420	1.934	0.827	1.759
new+GGL	0.295	1.582	0.986	1.754

Salinity

improvement due to high-res

Temperature

large improvement around thermocline depths

old+GGL ≃ new+KPP

	Temperature bias [°C]	Temperature RMSD [°C]	Salinity bias []	Salinity RMSD []
old+KPP	0.553	2.121	1.108	2.162
old+GGL	0.404	1.718	1.171	2.083
new+KPP	0.420	1.934	0.827	1.759
new+GGL	0.295	1.582	0.986	1.754

new+GGL = best performing setup

Mesoscale dynamics: Rossby radius

Recap:

$$R_{Ro} = \frac{1}{f} \sqrt{\frac{\Delta \rho}{\rho_0} gh}$$

Mesoscale dynamics: Rossby radius

Recap:

$$R_{Ro} = \frac{1}{f} \sqrt{\frac{\Delta \rho}{\rho_0} gh}$$

More sensitive to vertical resolution than mixing scheme: resolution > scheme for salinity ⇒ density gradient ⇒ **Rossby radius**

Mesoscale dynamics: Eddy field

Detection and tracking: Okubo-Weiss parameter

Mesoscale dynamics: Eddy field

Detection and tracking: Okubo-Weiss parameter

More frequent with KPP Longer-lived and larger with GGL

Less stable **stratification** ⇒ eddies decay more easily with **KPP**

Mesoscale dynamics: **Eddy field**

Eddies contribute in transport of tracers (e.g. salinity) in 2 ways

Advection of water masses

45.5

Latitude [°N] 44.0

44.0

43.5

Salinity []

37.5

38.0

37.0

36.5

36.0

35.5 35.0

OGS 3. Results

Mesoscale dynamics: Eddy field

Eddies contribute in transport of tracers (e.g. salinity) in 2 ways

2. Entrainment of coastal fresh water

3. Results

39.0

38.5

ε 8 0 Salinity []

37.5

37.0

36.5

36.0

35.5 35.0

Take home messages

High resolution is important, but is not enough: mixing schemes as relevant

Better resolving vertical dynamics:

 TKE based schemes (e.g. GGL) = good performance, even at coarser resolution ⇒ less expensive ⇒ efficient and accurate models

Effects on mesoscale:

- More stable **stratification** ⇒ more stable mesoscale circulation (eddies)
- Role of eddies in transport of tracers ⇒ improvement also for biogeochemical forecasts, pollution dispersal etc

Take home messages

High resolution important, but is not enough: mixing schemes as, if not more, relevant

Better resolving vertical dynamics:

 TKE based schemes (e.g. GGL) = good performance, even at coarser resolution ⇒ less expensive ⇒ efficient and accurate models

Effects on mesoscale:

- More stable stratification ⇒ more stable mesoscale circulation (eddies)
- Role of eddies in transport of tracers ⇒ improvement also for biogeochemical forecasts, pollution dispersal etc

Thank you for your attention!

Additional material

Mesoscale dynamics: Energy spectra

