Wave-flow coupling of SWAN with an unstructured model

Mike Herzfeld and Cagil Kirezci June 2025

Wave coupling is not new.....

- Waves can influence ocean circulation due to:
 - Radiation stress, Stokes vortex and Coriolis (Hasselmann, 1971, Leibovich, 1980)
 - Enhanced bottom friction (Madsen, 1994)
 - Enhanced vertical mixing (Monismith, 2008)
 - Nearshore processes
- Well summarized by:
 - Uchiyama et. al., (2010)
 - Kumar et., al., (2012)

Third generation spectral wave models in use

- Deliver wave quantities;
 - Wave amplitude (significant wave height), period, direction, wavenumber
 - Wave orbital velocity
 - Stokes drift
 - Radiation stress
 - Bernoulli head*
 - Non-conservative forces (breaking, white-capping)
- Common wave models;
 - SWAN (Simulating Waves Nearshore, Booij, 1999)
 - WWIII (Wave Watch III, Tolman, 1997)
 - WAM (Wave Ocean Model, WAMDIG, 1998)
 - WWM-II (Wind Wave Model, Roland, 2009)

^{*} Bernoulli head is an adjustment to the pressure in accommodating incompressibility

Previously coupled to ocean models

Structured

- ROMS-SWAN (COAWST model, Uchiyama, Kumar)
- COHERENS-SWAN (Liang et., al., 2007)
- POM-WWIII (Moon, 2005)
- POM-WAM (Xie et. al., 2001)

Unstructured

- ADCIRC-SWAN (Dietrich et. al., 2012)
- SELFE-WWM (Roland et. al., 2012)
- Schism-WWM (Schloen et. al., 2017)

Wave coupling

WEC Equations (see Uchiyama, Kumar)

Momentum

$$\frac{\partial u}{\partial t} + (\mathbf{u} \cdot \nabla_{\perp})\mathbf{u} + w \frac{\partial u}{\partial z} + f \hat{\mathbf{z}} \times \mathbf{u} + \nabla_{\perp} \phi - \mathbf{F} = \nabla_{\perp} \mathcal{K} + \mathbf{J} + \mathbf{F}^{\mathbf{w}}$$

Non-wave, non-conservative force

Stokes vortex / Coriolis

$$\mathbf{J} = -\hat{\mathbf{z}} \times \mathbf{u}^{St} ((\hat{\mathbf{z}} \cdot \nabla_{\perp} \times \mathbf{u}) + \mathbf{f}) - \mathbf{w}^{St} \frac{\partial \mathbf{u}}{\partial \mathbf{z}}$$

Non-conservative WEC

$$F^w = B^{bf} - B^{sf} + B^{wcap} + B^b + B^r$$
Bottom Surface White- Wave Wave dissipation streaming capping breaking roller

Bernoulli Head

RHS = WEC terms

Plus

- Continuity equation
- Tracer equation
- Depth averaged eqⁿ
- Boundary conditions

Unstructured model – COMPAS

- Ocean model is COMPAS (Coastal Ocean Marine Prediction Across Scales)
- Unstructured model using TRiSK numerics (e.g., as used in MPAS)
- Operates on a C-grid with a Voronoi tessellation
 - Hexagons represent the perfect Voronoi tessellation
 - Cell centres for tracers
 - Normal velocity at edges, reconstructed tangential velocity
 - No spurious modes on the C-grid
- Dual is a Delaunay triangulation
- Wave Model SWAN
 - Implicit
 - Can operate on unstructured meshes (triangulation)
 - Computational nodes are triangle vertices
- No remapping / interpolation required

Scalar location in COMPAS = Computational node in SWAN

Code Coupling

- SWAN is written in Fortran F95
- COMPAS is written in C
- Coupling achieved via C Interoperability Protocols
 (https://gcc.gnu.org/onlinedocs/gfortran/Interoperability-with-C.html
- COMPAS allocates and manages wave coupling variables
- Main SWAN (swmain) routine is isolated as a stand-alone library function
- Wave coupling variables are passed to swmain() as function arguments
- Interoperability Protocols pass all this data within one data structure
- SWAN accesses the wave variable memory via pointers
- No direct data transfer results in very efficient coupling

COMPAS code - initialisation

- Initialise all wave variables
- Set up pointers to wave variables in a data structure
- Pass structure to swmain() as an argument

SWAN code - initialisation

- Receive the arguments from COMPAS
- Set up pointers to wave variables in the input structure

COMPAS code - runtime

 Update hydro wave variables and pass to swmain()

SWAN code - runtime

 Update SWAN wave variables and pass to COMPAS

Stokes Coriolis / vortex

- ROMS uses the flux form (Uchiyama, Kumar) : $\frac{\partial u}{\partial t} + (u \cdot \nabla_{\perp}) \mathbf{u} = J$
 - Uchiyama adds Stokes drift added to Eulerian velocity ($u^\ell = u + u^{St}$) to give:

$$\frac{\partial u}{\partial t} + \nabla_{\perp} \cdot (u^{\ell}u) = u^{St} \nabla_{\perp} \cdot \mathbf{u}$$

- Kumar seems to evaluate Stokes vortex explicitly on the RHS
- COMPAS uses vector invariant form of momentum advection

Vector invariant momentum
$$\frac{\partial \textbf{\textit{u}}}{\partial t} + ((\hat{\textbf{\textit{z}}} \cdot \nabla_{\perp} \times \textbf{\textit{u}}) + f) \times (\hat{\textbf{\textit{z}}} \times \textbf{\textit{u}}) + \nabla_{\perp} \textbf{\textit{K}}$$
Relative Planetary Tangential Kinetic energy vorticity velocity

Stokes vortex / Coriolis $\mathbf{J} = ((\hat{\mathbf{z}} \cdot \nabla_{\perp} \times \mathbf{u}) + \mathbf{f}) \times (\hat{\mathbf{z}} \times \mathbf{u}^{St}) - w^{St} \frac{\partial \mathbf{u}}{\partial z}$

Momentum + Stokes vortex / Coriolis $\frac{\partial u}{\partial t} + ((\hat{z} \cdot \nabla_{\perp} \times \mathbf{u}) + \mathbf{f}) \times (\hat{z} \times (\mathbf{u} + \mathbf{u}^{St})) + \nabla_{\perp} \mathbf{K} = 0$

Stokes drift

- COAWST computes Stokes drift hydro-side using mean and peak wave variables
- COMPAS-SWAN compute 3D Stokes drift SWAN-side using the full spectrum
 - Composite Iterative Approach based on Romero et. al., (2021) following Breivik et. al., (2014)

Romero, L., Hypolite, D., & McWilliams, J. C. (2021). Representing wave effects on currents. Ocean Modelling, 167, 101873.

Breivik, O, Janssen, A.E., Bidlot, J. (2014) Approximate Stokes Drift Profiles in Deep Water. JPO, 44, 2433-2445.

Coupled wave model features

- COMPAS-SWAN is an efficient and modular solution to hydrodynamic-wave coupling
- Also includes;
 - Enhanced bottom friction
 - Enhanced vertical mixing (including Harcourt (2015) scheme)
- No SWAN-specific configuration is required when running
 - Mesh generation
 - Bathymetry
 - Forcing and open boundary data
- Required anyway for COMPAS
 - Input; leverage efficient high order (unstructured) interpolation (e.g., Sibson)
 - Output; cf-compliant UGRID netCDF
- Examples

Study domains (thanks to Cagil)

Mandurah test – June 2019

- 100 m coastal resolution
- 3 km offshore resolution
- TPXO tide forced
- Atmospherics: ACCESS winds (BoM, 12 km)
- Ocean OBCs: BRAN2020 (MOM5, 0.1 degree)
- Waves:
 Regional SWAN hindcast (500m)
 downscaled from Auswave G3
 Operational Wave Model (WW3)

Sea surface elevation

Difference (Waves – Hydro)

Wave height

Batemans Bay – August21

Date UTC

Narrabeen – August 21

Non-conservative WEC Terms

Summary

- An efficient and tightly coupled hydrodynamic-wave model was achieved using COMPAS-SWAN, leveraging
 - Co-location of hydrodynamic and wave scalar placement of variables
 - Data transfer using pointers
 - Streamlining Stokes Coriolis-vortex using hydrodynamic vector invariant momentum advection
 - Wave model access to hydrodynamic IO
- Model results appear promising

Thank you

