

Influence of temperature and salinity data assimilation on an operational forecast model for the North and Baltic Seas

Anju Sathyanarayanan¹, Xin Li², Eefke van der Lee², Ina Lorkowski², Lars Nerger¹

¹Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.

²Federal Maritime and Hydrographic Agency (BSH), Hamburg, Germany.

COSS-TT Meeting, 17th June 2025

Introduction

- Forecasting physical and biogeochemical variables in marginal and coastal seas remains challenging due to:
 - Complex dynamics
 - Limited observational data.
- Regional data assimilation (DA) plays a crucial role in delivering accurate, near-real-time marine information by integrating sparse observations with model estimates to generate the most reliable assessments of the ocean state.
- Sea surface temperature (SST) DA improves ocean forecasts in regions such as the Baltic Sea and the Northwest Shelf.
- Two DA experiments were conducted to evaluate the effect of assimilating multiple datasets on improving forecast accuracy.

Operational Model

HIROMB-BOOS-MODEL (HBM)

coupled to

- The model domain extends longitudinally from 4°W to 30.5 °E and latitudinally from 48.5 °N to 60.5 °N.
- The model is coupled with the DA component - Parallel Data Assimilation Framework (PDAF)
 - PDAF is an open-source data assimilation software that can be used for ensemble data assimilation

Assimilated data

CMEMS satellite SST

- Horizontal resolution 0.2 x 0.2 degrees
- Available at midnight (00hr)
- Surface/skin temperature
- Data period October 2018 to September 2019

In situ data (Temperature and salinity)

- 39 stations North Sea
 - 33 stations provide temperature data
 - 19 stations provide salinity data.
- 26 stations Baltic Sea
 - All stations provide temperature data
 - 7 stations provide salinity data.
- Assimilation :
 - 00 hr and 12 hr

Independent data validation: EN4 data

EN4 data locations available for the North and Baltic : October 2018 – September 2019

- Sufficient coverage over the North and Baltic Seas.
- Over 65% of data points have only one data entry per year.
- In the southern North Sea (coarse grid), data is only available in the first 3-4 months of the assimilation period.
- Average error values are calculated over the year to analyze model improvement.

Data Assimilation set up

Free run – without any data assimilation

Satellite SST data assimilation (SST-DA)

Satellite SST + in-situ data assimilation (SST-TS-DA)

- In-situ assimilation performed every day at:
 - Mid-night (00:00:00)
 - Noon (12:00:00)
- Localization radius for in-situ temp:
 - Coarse grid (rg) 90 km
 - Fine grid (rf) 20 km
- Localization radius for in-situ salt:
 - Coarse grid (rg) 30 km
 - Fine grid (rf) 10 km

- Experiment time period :
 - October 2018-September 2019
- Filter type used Local Error
 Subspace Transform Kalman Filter
 (LESTKF)
- 40 ensemble members.
- DA run weakly coupled
- Satellite SST
 - Localization radius :
 - Coarse grid (r_g)- 30 km
 - Fine grid (r_f) 5 km
 - assimilation performed every day at:
 - Mid-night (00:00:00)

Assimilation results: SST

- Coarse grid RMSE (with regard to station data):
 - By 47 % in SST-TS-DA
 - By 27% in SST-DA

- Fine grid: smaller reduction
 - 11 % in SST-TS-DA
 - 5 % in SST-DA

Satellite

In-situ

SST-TS-DA performs better than SST-DA.

Independent SST data validation: EN4 data

FG: Fine grid

COSS-TT Meeting, June 2025

Assimilation results: SSS

•SST-DA:

Strong SSS reduction in central North Sea.

•SST-TS-DA:

- Lower SSS reduction in central North Sea, but slight increase along Norwegian & Swedish coasts.
- Southern North Sea station data limits extreme SSS changes.
- Baltic Sea:
 - •Southern Baltic & Gulf of Riga: Lower SSS reduction due to station data assimilation.
- •Gulf of Riga changes are likely dynamic effects (no station data present).

Independent SSS data validation: EN4 data

NS : North Sea

BS: Baltic Sea

TR: Transiiton region

FG: Fine grid

Biogeochemistry: Surface Chlorophyll

- DA drives dynamical changes in chlorophyll through changed physical conditions.
- SST assimilation improves coastal chlorophyll forecasts (Baltic Sea & southeastern North Sea).
- Northern North Sea sees increased chlorophyll errors.
- Small differences in chlorophyll between DAirums: 20.07 mgChl/m³ (coarse), 0.03 mgChl/m³ (fine).

Summary

Two DA experiments:

- 1.SST-DA Assimilates only satellite SST data.
- 2.SST-TS-DA Assimilates both satellite SST and station temperature-salinity data.
- Both experiments effectively reduce SST and SSS RMSE in the North and Baltic seas.
- Assimilating more datasets highlights the importance of improving forecast accuracy, such as incorporating station salinity data to constrain salinity gradients, particularly in the transition region.
- In some cases, such as the Gulf of Finland, station data assimilation introduces localized errors, suggesting the need for optimized localization radii.
- BGC variables, such as surface chlorophyll, experience dynamic changes.