SWOT satellite sea level observations:

validation and integration with highresolution regional simulations

B. Mourre^{1,2}, E. Verger-Miralles¹, J.-P. Peng¹, L. Gómez-Navarro¹, M. García-Jove², E. Cutolo³, B. Barceló-Llull¹, D.R. Tarry⁴, N. Zarokanellos² and A.Pascual¹

- ¹ IMEDEA (CSIC-UIB), Spain
- ² SOCIB, Spain
- ³ IMT Atlantique, France
- ⁴ University of Washington, USA

SWOT satellite

- ➤ Launched in December 2022 (NASA/CNES)
- ➤ New interferometric technology → accurate 2-D monitoring of sea level variability at high-resolution (down to ~5km in wavelength)
 - 1 fast-sampling phase
- April-June 2023
- Cal/val activities
- Daily repetitivity along selected tracks

- 2 science phase
- From July 2023
- Covering the whole basin
- Individual tracks with a 21-day repetitivity

SWOT satellite

- ➤ Launched in December 2022 (NASA/CNES)
- ➤ New interferometric technology → accurate 2-D monitoring of sea level variability at high-resolution (down to ~5km in wavelength)

- 1 fast-sampling phase
- April-June 2023
- Cal/val activities
- Daily repetitivity along selected tracks

- 2 science phase
- From July 2023
- Covering the whole basin
- Individual tracks with a 21-day repetitivity

FaSt-SW0T project

Objectives

- Validation of SWOT satellite observations
- Integration of SWOT observations with in-situ measurements and high-resolution models
- Understanding the 3D dynamics linked to small-scale ocean features (10-100 km)

→ In-situ sampling of a small-scale eddy during the SWOT fast sampling phase in the Balearic Sea

SST (°C)

→ Repetition of the sampling after 10 days to track the evolution

FaSt-SW0T campaigns

Pascual et al., 2023 – **CRUISE PLAN** https://doi.org/10.20350/digitalCSIC/15276
Mourre et al., 2024 – **CRUISE REPORT** https://doi.org/10.20350/DIGITALCSIC/16511

Measurements

- 2 Slocum gliders [0-700 m]
- Moving Vessel Profiler (MVP) [0-200 m]
- Vessel-mounted ADCP [10-200m]
- Thermosalinograph
- 45 surface drifters
- **CTD** stations [0-700m]

R/V SOCIB

FaSt-SWOT leg 1

FaSt-SWOT leg 2

FaSt-SW0T campaigns

Modelling

high-resolution data-assimilative modelling from SOCIB WMOP modelling system including grid refinement

· ROMS model (www.myroms.org) Horizontal resolution: 2km Vertical: 32 g-levels Initial & boundary conditions from (Med-MFC (1/24°) · Atmospheric forcing: ALMet Harmonie (1h, 2.5km) **WMOP 2000m** SOCIB WMOP surface streamlines 21-Apr-2015 (Credits R. Escudier)

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation): SST, along-track SLA, Argo T-S profiles,

Ibiza Channel HF radar, moorings.

- Real-time
- Reanalysis
- Free-run

FaSt-SW0T campaigns

Modelling

high-resolution data-assimilative modelling from SOCIB WMOP modelling system including grid refinement

- Real-time
- Reanalysis
- Free-run

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):
SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

SSH (cm) BSOP-650m [28-Apr-2023]

SWOT vs conventional altimetry, SST and drifters

(E. Verger-Miralles)

- → 6 SVP-B drifters (with drogue at 15 m) trapped in the eddy (inertial oscillations filtered here)
- > Positive SLA signal intensified in SWOT data wrt conventional gridded altimetry, with smaller-scale features
- → SWOT data consistent with SST gradients and drifter trajectories

Vertical structure observed by underwater gliders

- Back and forth crossing of the eddy
- Total of 8 sections (~ 3.5 days each)

SWOT SSH vs glider dynamic height

$$DH = -\frac{1}{g} \int_{p_0}^{p_1} \frac{1}{\rho} dp$$

- → SWOT SSH and glider DH in good agreement
- → 33% improvement wrt conventional altimetry
- → Significant daily variability in SWOT data

SWOT-derived vs ADCP velocities

→ Very good agreement between SWOT-derived geostrophic velocities and ADCP horizontal velocities at 80 m

Cross-section velocities (cm/s)

SWOT-derived vs ADCP velocities

→ Very good agreement between SWOT-derived geostrophic velocities and ADCP horizontal velocities at 80 m

SW0T improvement over conventional gridded altimetry

→ Significant RMSD reduction wrt conventional altimetry maps

→ Significant daily variability

SWOT ADT maps 26 Apr to 10 May

SWOT ADT maps 26 Apr to 10 May

(L. Gómez-Navarro)

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):

SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):

SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):

SST along-track SLA Argo T-S profiles

SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):
SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):
SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Glider vs model

Daily data assimilation in WMOP (Multimodel Local Ensemble Optimal Interpolation):

SST, along-track SLA, Argo T-S profiles, Ibiza Channel HF radar, moorings.

Glider 2 - Transect 3 (northward)

Daily SSH variability

→ Model free run 650m horizontal resolution

Model SSHA along eddy cross-section

(J.-P. Peng)

Importance of ageostrophic processes

Surface velocities (m/s)

Impact of SWOT observations through data assimilation Assimilated observations Assimilated observations assimilation

GEN = along-track SLA, SST, Argo T-S, Moorings, HF radar

1- Assim GEN

2- Assim GEN + SWOT

3- Assim GEN + CTDs + Gliders

4- Assim GEN + CTDs + Gliders + SWOT

Impact of SWOT observations through data assimilation

SSH anomaly on 27-Apr-2023 12:00

Conclusions

- New small-scale sea level observing capability provided by the SWOT satellite, with very good accuracy.
- SWOT-derived surface geostrophic currents consistent with observed currents for the small scale eddy under study.
- Daily repetitivity during the fast-sampling phase reveals significant daily SSH variability, also somehow present in glider data and model simulations.
- Ageostrophic components of surface currents significant in areas with intense SSH gradients.
- First experiments assimilating SWOT data in numerical models show qualitative improvement. Detailed analysis still needed.

Conclusions

Verger-Miralles et al., SWOT enhances small-scale intrathermocline eddy detection in the Mediterranean Sea, Authorea Preprints 2024, ESS Open Archive, https://essopenarchive.org/doi/full/10.22541/essoar.17 3315547.75973902, submitted to Geophys Res Letters

"Del espacio al Mediterráneo: Persiguiendo corrientes marinas"

Thank you!

Acknowledgements

PID2021-122417NB-I00 funded by MCIN/AEI/10.13039/501100011033/ FEDER, UE

