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Characterizing and forecasting the state of the ocean is essential for various scientific, management, 
commercial, and recreational applications. This is, however, a challenging problem due to the large, 
multiscale and nonlinear nature of the ocean state dynamics and the limited amount of observations. 
Combining all available information from numerical models describing the ocean dynamics, observations, 
and prior information has proven to be the most viable approach to determine the best estimates of the ocean 
state, a process called data assimilation (DA). DA is becoming widespread in many ocean applications; 
stimulated by continuous advancement in modeling, observational, and computational capabilities. This 
chapter offers a comprehensive presentation of the theory and methods of ocean DA, outlining its current 
status and recent developments, and discussing new directions and open questions. Casting DA as a 
Bayesian state estimation problem, the chapter will gradually advance from the basic principles of DA to its 
most advanced methods. Three-dimensional DA methods, 3DVAR and Optimal Interpolation, are first 
derived, before incorporating time and present the most popular, Gaussian-based DA approaches: 4DVAR, 
Kalman filters and smoothers methods, which exploit past and/or future observations. Ensemble Kalman 
methods are next introduced in their stochastic and deterministic formulations as a stepping-stone toward 
the more advanced nonlinear/non-Gaussian DA methods, Particle and Gaussian Mixture filters. Other 
sophisticated hybrid extensions aimed at exploiting the advantages of both ensemble and variational 
methods are also presented. The chapter then concludes with a discussion on the importance of properly 
addressing the uncertainties in the models and the data, and available approaches to achieve this through 
parameters estimation, model errors quantification, and coupled DA. 

Introduction 

ollowing the tremendous progress in weather monitoring and forecasting, there is increased 

interest in developing global and regional systems for operational oceanography in order to 

provide estimates and forecasts of essential ocean variables. Outputs of such systems can 

be used to generate data products, applications, and services through national authorities and 

organizations, such as metocean service providers and environmental agencies. These can include 

nowcasts providing the most usefully accurate description of the present state of the ocean, forecasts 

of the future ocean conditions as far ahead as possible (typically one to two weeks), and reanalyses 

(hindcasts) assembling long-term datasets to describe the history of the studied region including 

time series showing trends and changes. Such products can provide crucial information for a wide 
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variety of marine industrial and governmental activities and societal needs, including safety of life 

at sea, coastal extremes, pollution and contamination management, tourism, marine conservation, 

fisheries and aquaculture, exploration and drilling, desalination and plant cooling operations, 

shipping, harbor management and national security operations, etc. Operational oceanographic 

programs have been recently established in several countries of the European Union, as well as the 

United States of America and Japan.

Operational oceanography depends on the availability of ocean observations transmitted in 

(near-) real-time and time-dependent numerical models to project the information gathered by the 

observations into the future (or the past). The models can be constructed based on the observations 

(e.g., Hamilton et al., 2016; Dreano et al., 2015; Lguensat et al., 2017) by exploiting their statistical 

properties, but their outputs could be restricted to the measured quantities, which are limited in 

space and time. Such models have the advantage of being computationally very efficient, but their 

predictive capabilities are often limited to short temporal ranges and may not be efficient for 

predicting extremes. More established ocean models are developed based on the physical laws that 

govern the oceans general circulation (Navier-Stocks equations). Despite significant computational 

requirements, the dynamics of these models bring more information to the otherwise 

underdetermined ocean state estimation problem, which enhances the accuracy and dynamical 

consistency of the ocean state estimates. 

Whether based on statistical properties or physical laws, ocean models are not perfect and can 

be subject to various sources of uncertainties. Observation-based models are, for instance, 

constructed based on statistical assumptions which may not be always relevant. Dynamical models, 

on the other hand, require atmospheric forcing that is not always available at the required spatial 

and temporal resolutions, and are themselves distorted by uncertainties. Numerical errors, missing 

physics, and poorly known parameterizations coefficients (e.g., diffusivity and viscosity) are also 

important sources of uncertainties in such models. These errors may accumulate over time and often 

deviate the model from the real ocean trajectory, even when the ocean state is perfectly known at 

the initial time. It is now recognized that the most efficient approach to obtain reliable ocean state 

estimates is to routinely constrain and adjust the model outputs with incoming ocean data through 

a data assimilation (DA) process (Ghil and Malanotte-Rizzoli, 1991; Wunsch, 1996; Bennett, 2005). 

In general, DA exploits the models as spatio-temporal interpolators of the data, and the data guide 

the models toward the true trajectory of the system. Effective operational oceanography relies on 

the ability to assimilate massive amounts of data gathered by monitoring systems in real time into 

advanced general circulation models (GCMs) on supercomputer facilities. 

Although the theoretical framework of DA methods is well established on the Bayesian 

estimation theory (Law et al., 2015), the applications of these with state-of-the-art ocean general 

circulation models (OGCMs) is still strongly hampered by the large dimensional and nonlinear 

characteristics of these systems. As will be further discussed later, poor knowledge of the statistical 

properties of the models and data uncertainties also limits the efficiency of ocean DA systems. This 

chapter will provide a general overview of ocean data assimilation methods, presenting the state-

of-the-art methods, their origins and relations, and discussing in particular major limitations and 
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future directions. It makes no attempt to be a comprehensive review of the extensive DA literature, 

which extends back to the late 1950s. This chapter will first describe the three-dimensional (3D) 

DA problem that only considers the current observations in the estimation of the ocean state before 

moving to more advanced four-dimensional (4D) DA methods, focusing on the most commonly 

used 4D variational (4DVAR) methods and ensemble Kalman filters. More sophisticated methods 

combining variational and ensemble methods and more advanced ones designed for non-Gaussian 

distributions and their potential use for enhancing ocean data assimilation systems will be also 

discussed. A summary of all the DA approaches discussed in this chapter and their main founding 

hypothesis is provided in Table 17.1.  

 
DA Method Founding Hypothesis Derivation 

3D variational assimilation 
(3DVar) 

Gaussian model state and 
observation noise 

Minimize a cost function that involves 
the model state and observation at a 
given time instance 

4D variational assimilation 
(4DVar) 

Gaussian model state, model 
errors and observation noise 

Minimize a cost function that involves 
the model state and observation at a 
given time interval. Relations between 
model state variables are constrained 
by the dynamical model 

Kalman filter (KF) Linear dynamical model and 
observation operator; 
Gaussian model state, model 
errors and observation noise 

Take the maximum a posteriori (MAP) 
estimate of the ocean state 
conditioned on previous observations 

Extended Kalman filter 
(EKF); including reduced 
EKFs 

Nonlinear dynamical model 
and/or observation operator; 
Gaussian model state, model 
errors and observation noise 

Linearize nonlinear dynamical model 
and/or observation operator, and then 
take the MAP solution as in KF 

 

Ensemble Kalman filters 
(EnKF), and ensemble 
optimal interpolation 
(EnOI) 

As in EKF Use an ensemble of model states to 
estimate the background statistics 
(prior mean and covariance), and 
corresponding KF update formulas to 
produce an analysis ensemble with 
targeted posterior mean and 
covariance 

Particle filter (PF)  Nonlinear dynamical model 
and/or observation operator; 
non-Gaussian model state, 
model errors and observation 
noise 

Use mixture of Dirac delta functions 
to approximate the prior and posterior 
distributions of the model state 
conditioned on previous observations 

Gaussian mixture filter 
(GMF); including 
ensemble GMFs 

As in PF Use mixture of Gaussian distributions 
to approximate the prior and posterior 
distributions of the model state 
conditioned on previous observations, 
and also to approximate the 
distributions of the model errors and 
observation noise when necessary 

Table 17.1. Founding hypotheses and derivations of data assimilation (DA) methods. Founding hypotheses 
describe assumption(s), e.g. linearity and/or Gaussianity, behind DA methods from a Bayesian perspective; 
whereas derivations summarize features utilized and/or actions taken to derive the DA methods. The table 
focuses on the filtering schemes, but the descriptions are also valid for the corresponding smoothing schemes. 
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Three‐Dimensional Data Assimilation 

The three-dimensional data assimilation (3DDA) problem refers to the space domain in which we 

look for the best estimate xa (a for analysis) of the ocean state x at some time given only the 

observation y of the state at that time. y may contain in situ measurements from cruises, profiles, 

gliders, and buoys, and satellite measurements of sea surface height and sea surface temperature. x 

is typically comprised of the prognostic model variables (needed to initialize the model) at every 

grid point of the domain, such as temperature, salinity, sea level, and velocities. We assume the 

observational model H, possibly nonlinear, relating the ocean state to the observation is available. 

y = H(x).     (1) 

Estimating x from y can be formulated as a weighted least-squares inverse problem in which we 

look for x that minimizes an objective function measuring the distance between the ocean state and 

the observations, of the form 

J3D(x) = (y − H(x))T Wy (y − H(x)) = ||y − H(x)|| 2
𝐖௬ ,  (2) 

where Wy is the data weight (definite positive) matrix introduced to specify the observations 

weights in the optimization (to assign, for example, less weights to uncertain measurements). In 

ocean applications, the number of observations p (i.e., dimension of y) is typically much smaller 

than the number of state variables to be inferred n (i.e., dimension of x). This makes the above 

problem underdetermined, and more information is needed to regularize it (Wunsch, 1996). This is 

commonly enforced by solving for the ocean state estimate that is not too far from a given prior 

state estimate xb (b for background), often taken as the most recent forecast (nowadays computed 

by the ocean model starting from the most recent state estimate). The objective function then 

becomes 

J3D(x) = ||y − H(x)|| 2
𝐖௬ + ||x − xb|| 2

𝐖 ,   (3) 

where Wb is the background weight matrix. 

This deterministic formulation of the ocean state estimation problem does not provide a 

framework for choosing the weight matrices or to quantify the uncertainties in the estimate. A more 

general approach to formulate the 3DDA problem is to encapsulate it within a Bayesian framework, 

which considers the ocean state x and the observation y as random variables, see for example Simon 

(2006) and Wikle and Berliner (2007). This naturally allows us to account for the uncertainties in 

the observation, which is often expressed as 

                                            y = H(x) + 𝜀,      (4) 

where 𝜀 represents the observational errors, generally assumed unbiased, and to exploit a prior 

knowledge of the state and its uncertainty through their probability distributions. The solution of 

the estimation problem is then determined as the conditional probability distribution of the state 

given the observation px|y, which is computed via the Bayes’ rule,   
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(5) 

px|y is also called posterior and represents an update of the prior distribution px, while py|x is the 

likelihood function of y given x, and py is the marginal distribution of y representing a normalizing 

constant to ensure that the final solution is a probability distribution. An ocean state estimate xa can 

then be obtained as the maximum a posteriori (MAP) estimate maximizing px|y, or the minimum-

variance (MV) estimate (or posterior mean), which are equivalent when the posterior is Gaussian. 

Assuming the prior and observation errors follow normal (Gaussian) distributions, then the 

posterior is given by (Talagrand, 2010) 

 

(6) 

where R and B are respectively the observation and background error covariance matrices. 

Maximizing px|y is equivalent to minimizing J3D, with the weight matrices as the inverse of the 

covariance matrices, i.e. Wy = R−1 and Wb = B−1. 

When the observational operator is linear, and thus will be denoted by H, the solution of the 

problem can be directly computed by setting the derivative of the convex objective function J3D to 

zero, to obtain 

(7) 

and its error covariance matrix 

(8) 

where K is the Gain matrix given by 

(9) 

Note that in a non-Gaussian setting with a linear observational operator, the above solution remains 

the best linear unbiased estimator (BLUE; Talagrand, 2010), where “best” stands for minimum-

variance. 

Optimal Interpolation (OI; Bouttier and Courtier, 1999) is a popular algebraic simplification of 

the Gain matrix in the BLUE designed by viewing Eq. 7 as a list of scalar analysis equations, one 

per state variable of x. Only observations located within a certain distance from the variable being 

analyzed are then used to compute the increment of that variable. This makes the OI scheme easy 

to parallelize and implement for efficient DA. 

When the observational operator is nonlinear, the objective function is not convex and may 

exhibit several minima; but near the minimum one can linearize it (around the background) before 

computing the BLUE, exactly as above. One may also consider an iterative solution to the problem 

Eq. 7 by computing the linearization of the observational operator around the estimate of the last 

iteration (Simon, 2006). 



4 70    I B R A H IM  H O T E I T  E T  A L .  
 
 

A more straightforward approach is to apply an optimization algorithm to directly minimize the 

objective function J3D, the most popular of which are the gradient-based optimization methods 

because of their fast convergence rate (Bouttier and Courtier, 1999). These methods use the gradient 

of the objective function to determine descent directions toward the minimum in an iterative 

procedure (Bouttier and Courtier, 1999). The gradient of J3D with respect to x is 

 
(10) 

which only requires the computation of the product of the inverse of the background and observation 

error covariances by a vector. As such, this offers the possibility to accommodate more sophisticated 

forms of the background error covariance matrix. This framework is known as the 3D variational 

(3DVAR) assimilation problem and is still heavily implemented in operational weather forecast 

centers. 

The observational and background covariance matrices R and B are very important in 

determining the solution of the assimilation problem. These set the extent to which the background 

field (forecast) will be adjusted by the data by setting the weights of the background and data terms 

in the inversion. In practice, however, there is insufficient information to determine these matrices 

and ad hoc estimates are used instead. The observation errors are often assumed to be spatially 

uncorrelated, so that R is diagonal. Imposing correlation errors for data with important spatial 

coverage, such as satellite and radars, is important to avoid overweighting them in the assimilation. 

This could be conveniently implemented through an appropriate choice of a covariance model. A 

simpler way is to deliberately reduce the weights (i.e., overestimates the error variances) of the 

“clustered” observations, whose errors are expected to be correlated. Modeling B is more delicate 

as it needs to incorporate ocean balance properties and smoothness constraints, as the analysis 

increment completely lies within the subspace spanned by the directions of B. The use of such 

constraints helps to dynamically spread the information in the observations, which should provide 

an analysis that could be more conveniently assimilated by the ocean model for forecasting. This 

was thoroughly discussed by Weaver et al. (2003, 2005) and Blayo et al. (2014). Use of ensemble 

of model outputs in the modeling of B has also became popular (e.g., Buehner, 2005). 

Examples of ocean operational systems based on 3DDA methods include the US Naval 

Oceanographic Office NAVOCEANO system (Smedstad et al., 2003), the Meteorological Research 

Institute multivariate ocean variational estimation MOVE System (Usui et al., 2006), the European 

ECMWF system (Balmaseda et al., 2013), the Global Ocean Forecasting System (GOFS; 

Cummings and Smedstad, 2013), and the UK Met Office Forecasting Ocean Assimilation System 

(FOAM; Blockley et al., 2014). 

Four‐Dimensional Variational Assimilation 

Four-dimensional variational assimilation (4DVAR) is a generalization of 3DVAR to the problem 

of estimating the state of a dynamical system using a set of observations that are available over a 

time interval. This not only includes information from future and past observations to estimate the 
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ocean state at a given time, but also enables exploitation of the dynamical information from the 

equations that govern the evolution of the ocean state in time (i.e., ocean model). In its most general 

form, the latter could be described by the Navier-Stokes equations (Temam, 1984), and we represent 

it here as a discrete-time dynamical operator Mk that integrates the ocean state x between two 

consecutive time steps tk−1 and tk as 

(11) 

ηk is a stochastic term representing uncertainties in the model, referred to as model error, and is 

usually conveniently assumed stochastic following a Gaussian distribution of mean zero (unbiased) 

and covariance Qk. 

4DVAR can be directly formulated from the least-square objective function (Eq. 3) by 

constraining the (sum of the) distances between the model state at the times of available data, 

according to some weight for each term. Here, we first derive 4DVAR as the MAP estimator of a 

Bayesian estimation problem before presenting the adjoint method to efficiently compute the 

gradient of the objective function and accordingly its optimum. We finish with a discussion on the 

main features and issues of this approach. 

Bayesian formulation 

The Bayesian estimation problem of the ocean state x0, . . . , xL over a time interval [T0 TL] given a 

set of available observations y0, . . . , yL, related to the ocean state as in Eq. 1, involves the calculation 

of the conditional probability distribution, similar to Eq. 5. 

 
(12) 

Assuming observation and model errors εk and ηk are independent in time and mutually 

independent, and given the Markov Chain nature of the dynamical system (Eq. 11), standard 

conditional probability calculations lead to. See, for example, Simon (2006) and Law et al. (2015), 

 

(13) 

and under the assumption of Gaussian probability distributions we find analogous to Eq. 6 

(14) 

where  

 (15) 

The MAP estimator can thus be obtained by minimizing the 4D objective function J4D as defined 

in Eq. 15, which is the same as optimizing 
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(16) 

subject to the ocean dynamics as described by Eq. 11. 

The dimension of the ocean state can be very large in realistic applications, reaching up to 109–

1010 in today’s applications. And given that it should be determined for every time step, the required 

information exceeds by far the amount of available ocean data, even for coarse resolution models. 

One straightforward way to reduce the dimension of the 4DVAR optimization problem and mitigate 

its under-determined nature is to reduce the number of parameters by allowing only certain forms 

of model uncertainties. The extreme case is to assume the ocean model (Eq. 11) to be perfect, i.e., 

ηk = 0, so the problem reduces to finding the initial condition x0 that best fits, within observation 

errors uncertainties, the model to the data by minimizing (as schematically illustrated in Fig. 17.1) 

 

(17) 

This is known as the strong constraint 4DVAR problem. Directly optimizing (Eq. 16) is known as 

the weak constraint 4DVAR problem. 

 

Figure 17.1. Schematic diagram of the 4DVAR assimilation procedure: fit the model to all available 
observations within an assimilation window to compute the analysis, from which integrate the ocean model 
for forecasting. 

A large variety of different configurations exist between these extreme cases, for instance 

adjusting the ocean model parameters and inputs by including them as part of the estimation 

problem, i.e., as variables to be optimized in J4D. This may, for example, include the external forcing 

fields such as atmospheric and open boundaries conditions, the ocean topography, and/or internal 

parameters of ocean physics such as ocean mixing parameters, as has been successfully 

implemented in the Estimation of the Circulation and the Climate of the Ocean (ECCO) consortium 

(Wunsch and Heimbach, 2007; Kӧhl and Stammer, 2008) and the Regional Ocean Modeling System 

(ROMS; Moore et al., 2011). The objective function in this case would be comprised of the standard 

model-data misfit term along with prior and regularization terms to constrain the adjustments to the 
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optimized variables similar to the background term. This should be viewed as another approach to 

implementing a weak 4DVAR in which the model errors are non-additive but directly accounted 

for through appropriate dynamical parameterizations in the ocean model, which may help reduce 

the dimension of the optimization problem and impose dynamically balanced solutions for the 

adjusted variables and the estimated ocean state. 

Solution of Four‐Dimensional Variational (4DVAR) Assimilation 

As in 3DVAR, gradient-based optimization algorithms are the standard methods to compute the 

4DVAR solution. However, an important difference arises from the requirement that the solution 

needs to obey the model equations (Eq. 11). This leads to a so-called constrained optimization 

problem that is solved with the variational method. The variational principle, which is in functional 

space identical to setting the derivative of the objective function to zero, leads to the Euler-Lagrange 

equations. The latter are the adjoint equations to the tangent linear model equations, hence referred 

to as the adjoint method. The adjoint method provides the gradient by integrating the adjoint model 

backward in time, and is the most common approach to compute the gradient of the 4DVAR 

objective function J4D (Le Dimet and Talagrand, 1986). 

To understand why the backward integration of the adjoint gives the gradient, consider the 

strong constraint 4DVAR cost function. Using the chain rule for the derivatives of composite 

functions, one obtains 

 

(18) 

where 

 .            (19) 

This shows that the gradient of J4D can be computed as −2𝐱0 by integrating the adjoint model 

backward in time 

 

(20) 

𝐱 is the so-called adjoint variable to x. Comparing Eq. 20 with Eq. 18 shows that 𝐱0 is the gradient 

of Eq. 18. Moreover, it is obvious that 𝐱 does not only provide the gradient at the initial time (and 

any given time), but will further provide gradients to model parameters (and inputs). For linear 

problems, the solution can be calculated directly from the set of adjoint and forward model 

equations. For nonlinear cases, the solution is computed iteratively, with each optimization iteration 

requiring one integration of the forward model starting from the parameter changes of the most 

recent iteration, based on the trajectory of which another integration of the adjoint model is 

performed backward in time to compute the gradient of the cost function.  

This same adjoint machinery is also at the basis of the weak constraint 4DVAR problem, 

following the dual formulation (Courtier, 1997) or the Representer method (Bennett, 2005). Both 

approaches transfer the inversion into the data space, which allows to drastically reduce the 
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dimension of the weak 4DVAR optimization problem since the number of ocean data is commonly 

much smaller than the ocean state. The adjoint model is also used to compute the gradients of the 

4DVAR objective function with respect to any model parameters, again using the chain rule (see, 

for example, Heimbach et al., 2002). 

The weak 4DVAR methods provide very powerful tools to fit the ocean models to the available 

data; making the 4DVAR inversion problem highly underdetermined. Optimizing model errors at 

frequent model steps may enable efficient fit to the ocean observations but with a real risk of data 

overfitting and non-dynamical model errors adjustments. The role of the model errors covariance 

matrices Qk becomes crucial, with unfortunately no established or efficient way to define these 

matrices (Wunsch, 1996; Hoteit et al., 2010). 

Coding the adjoint model requires implementing the tangent linear model of the ocean model 

and its adjoint, and this can be a very demanding process. Automatic compilers have been developed 

to directly generate the adjoint code from the source code of the dynamical model (Giering and 

Kaminski, 1998). These may greatly facilitate the process of developing and maintaining the adjoint 

model to keep it up-to-date with forward model changes, but also impose some formats in the coding 

of the (forward) ocean model (Vlasenko et al., 2016). In addition to the technical challenge of 

generating an adjoint model, running the adjoint iteratively multiplies the cost of running a 

simulation by a factor of several hundreds. An additional difficulty arises in nonlinear models from 

the fact that the whole model trajectory needs to be known and stored at the time when the adjoint 

model is running. Checkpointing methods could be implemented into the adjoint code generation 

tools to efficiently reconstruct the trajectory (Heimbach et al., 2002). 

Increasing efforts are being made to develop efficient methods that allow to either simplify the 

task of developing an adjoint code through reduced-order techniques, or completely by-passing the 

adjoint model through direct computation of the 4DVAR objective function gradients from forward 

model runs only. Reduced-order methods were developed around three related directions (Altaf et 

al., 2013a): (i) apply the optimization in a reduced space as a way to reduce the dimension of the 

optimization space to speed up the convergence rate (Robert et al., 2005; Hoteit and Köhl, 2006); 

(ii) develop a reduced-order model of the ocean model from which the adjoint model is derived 

(Vermeulen and Heemink, 2006; Fang et al., 2009); or (iii) directly develop a reduced-order adjoint 

model while still using the original forward ocean model for forward integrations (Altaf et al., 

2013a; Yaremchuk et al. 2016). In this context, ensemble methods became popular as they were 

suggested to provide efficient tools to compute the gradients of the 4DVAR objective function, or 

to be used to parameterize the adjoint space in a hybrid assimilation framework (more on this in 

section below). Other adjoint-free optimization methods were tested, but these require dimension 

reduction before implementation to reduce their prohibitive computational burden (e.g., Hoteit, 

2008). 

The main difficulty in applying the adjoint method to ocean data assimilation problems is due 

to the nonlinear nature of the equations governing their dynamics. This problem is expected to 

become more severe as the resolution of ocean models continues to increase. In this case, the 

4DVAR objective function becomes too irregular (non-convex), including multiple minima that 
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prevent a noticeable decrease in the objective function with gradient-based optimization techniques. 

This is associated with rapidly-growing response to perturbations (“intrinsic variability”) that 

ultimately become unpredictable and are thus not controllable in the system. The adjoint gradient 

sensitivities then grow exponentially in time and become not useful in the optimization problem 

because for increasing assimilation windows the parameter range of validity of the linear 

approximation quickly becomes smaller than the uncertainty in the control parameters, which limits 

the length of the assimilation windows. In other words, the nonlinearity of the system invalidates 

the use of the gradient for descent (Pires et al., 1996; Köhl and Willebrand, 2002). Although short 

assimilation windows remain feasible, this may limit the benefit of the adjoint method, particularly 

since ocean observations are sparse and uncertain. Therefore, larger windows are desired to properly 

extract the large-scale parameter information via the dynamical constraint (Kӧhl and Willebrand, 

2002). Large windows can be also useful to reduce dependence on the background covariance 

matrix and to provide enough time to infer enough sensitivities to, for instance, atmospheric forcing 

and/or boundaries conditions and other parameters if these were also to be adjusted in the 4DVAR 

system. 

Since large scales are associated with longer predictability timescales, a way out is to separate 

the small from the large scales. This could be implemented by increasing viscosity and diffusivity 

terms in the backward adjoint run, which becomes close to the adjoint of a coarser, more linear 

model without local minima (Hoteit et al., 2005a). This approach works even with the original high-

resolution forward model, because secondary minima become so dense over long periods of time 

that they appear as stochastic perturbations (Hoteit et al., 2005a). The limitation of this approach is 

that it may also start filtering out large-scale features over time because of the tight coupling 

between the different scales in the ocean. An alternative could be based on ensemble methods (Lea 

et al., 2000), but since the number of required ensembles grows as the gradients increase, this 

method quickly becomes unfeasible. It is still not clear to what extent the smoothing nature of the 

reduced-order and ensemble-based approaches, whether to derive an approximate adjoint or to 

directly compute the gradients, could mitigate this issue and help extend the assimilation windows. 

A new approach was recently borrowed from the chaos theory to tackle the issues with 

nonlinearities, and it was applied for ocean parameters estimation of a climate model. Noticing that 

a coupling leads to synchronization of similar chaotic systems over long periods of time, a parameter 

estimation method based on the ability of a parameter-dependent system to synchronize with 

observations was developed in physics (Abarbanel, 2012). The coupling to the observations is 

included in the model as a relaxation term that, when strong enough, ultimately will turn the system 

into a non-chaotic system in which parameter estimation with the adjoint method may become again 

feasible. A caveat to this method is that the estimation takes place in a modified system and may no 

longer be optimal with respect to the original system. Moreover, because synchronization turns into 

a damping in the adjoint model, data will have a limited effect (in time) on the estimated parameters, 

particularly the initial conditions. 

Recently, several 4DVAR regional ocean operational systems have been successfully developed 

and are currently routinely providing forecasts of ocean states, including the real-time forecasting 
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system of the Mid-Atlantic Bight (Zhang et al., 2010), the University of California Santa Cruz 

California Current forecasting system (Moore et al., 2011), the University of Hawaii forecasting 

system for the region surrounding the main Hawaiian Islands (Janeković et al., 2013), and the Navy 

Coastal Ocean forecasting of the Okinawa Trough (Smith et al., 2017b). 

4DVAR is designed to compute the MAP as the final solution for the DA problem but not its 

covariance, which will be needed as a background for the next assimilation cycle. Although this 

could be conveniently estimated using the adjoint to compute a low-rank approximation of the 

Hessian matrix of the 4DVAR objective function, which is the inverse of the MAP error covariance 

matrix when the system is linear and the noise is Gaussian (Smith et al., 2015), strong nonlinearities 

mean that the Hessian will probably be computed around a local minima and may not reflect the 

global errors in estimation. The next section will present the Bayesian filtering approach that aims, 

in contrast, at directly computing the full conditional probability distribution of the ocean state given 

available observations. 

Bayesian Filtering 

The Bayesian estimation problem can be solved sequentially in time, as the observations become 

available. This is known as Bayesian filtering and it readily provides a suitable framework for 

operational oceanography where an ocean model is used for forecasting and the data are assimilated 

to update the model forecasts with the Bayes’ rule every time they become available. Here, we are 

interested in estimating the ocean state at a given time tk given all available observations up to tk, 

which in a Bayesian setting involves the computation of p
𝒐

𝒙 |𝒚, . . . , 𝒚 . Marginalizing Eq. 12, the 

filtering solution is then identical to the Bayesian estimator (Eq. 12) at the end of the assimilation 

window. This contrasts with a “smoother,” which involves observations beyond time instant tk, e.g., 

4DVAR and ensemble Kalman smoothers (more on this in section below). This section will focus 

on the state estimation problem and introduce DA algorithms from a Bayesian filtering perspective. 

Most of these algorithms, as those presented below, aim at computing the MV estimator instead of 

the MAP estimator of 4DVAR. 

The basis of Bayesian filtering is a state space model comprised of a dynamical model (Eq. 11) 

and an observation model (Eq. 1) that provides measurements of the ocean state in time. These 

provide p
𝒐

𝒙| 𝒙–ଵ
 and the likelihood p

𝒐
𝒚| 𝒙

, respectively. Using standard conditional probability 

rules (e.g., Simon, 2006and Law et al., 2015), one can write 

 
(21) 

The posterior or analysis distribution is thus the product of the likelihood of the state given the new 

observation and the forecast (prior) distribution, which is the distribution of the state conditioned 

on all previous observations. This is called the update or analysis step. The forecast distribution can 

be computed from the analysis distribution at the previous time step by first computing the joint 
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distribution of (xk, xk−1) conditioned on y0, . . . , yk−1, then integrating over xk−1 to obtain the desired 

marginal distribution as 

(22) 

Therefore, if the analysis distribution is available at a given time, one can first compute the forecast 

distribution using Eq. 22, and then compute the analysis distribution at the next time using Eq. 21. 

One can then proceed recursively, starting from a prior distribution at the initial time and then 

alternate forecast and analysis steps to compute the analysis distribution at any given time. The 

filtering procedure is thus similar to a 3DDA procedure (as illustrated in Fig. 17.2), but operates on 

the state distribution rather than the state. This recursive framework provides a solution to the 

estimation problem and conceptually leads to the so-called optimal filter. In practice, however, 

difficulties often arise in computing the filter solution (distributions), largely due to the fact that 

evaluating the integrals in Eqs. 21-22 are numerically intractable in high-dimensional problems, 

such as the ocean. For such applications, one has to adopt certain approximations to derive some 

sub-optimal filters that provide accurate enough results at reasonable computational requirements. 

Reviewing different approaches for sub-optimal filtering is the focus of this section. 

 

Figure 17.2. Schematic diagram of the sequential (3D and filtering) assimilation procedures, including 
3DVAR, OI, KF, EnKFs, and PF. During the forecast step, the ocean model is integrated to the time of the next 
available observation starting from the most recent analysis. During the analysis step, the forecast is updated 
using the incoming observation to compute the analysis. Four assimilation cycles are shown. 

Starting with the celebrated Kalman filter (KF; Kalman, 1960), which is designed for linear 

systems (dynamics and observations) and Gaussian errors, we present variants of the KF that enable 

its implementation for DA into large-scale nonlinear models. This includes the low-rank extended 

Kalman filters (LR-EKFs) and ensemble Kalman filters (EnKFs). The KF linear update step does 

not hold with the nonlinear ocean dynamics and for some of the ocean observations (e.g., acoustics). 

We will also present two nonlinear/non-Gaussian filters that are currently being investigated for 

potential use with realistic ocean data assimilation problems, the particle filter (PF) and the 
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Gaussian mixture filter (GMF). A schematic diagram illustrating the various filtering strategies is 

provided in Fig. 17.3. 

The Kalman Filter (KF) 

In the KF (Kalman, 1960), the dynamical and observation operators in (Eqs. 11 and 1 are linear, 

and thus denoted respectively by M and H in this section; and the associated noise 𝜀 and 𝜂 are 

Gaussian (i.e., the likelihood function p
𝒐

𝒚| 𝒙
 and the transition distribution p

𝒐
𝒙| 𝒙–ଵ

 in (21) and 

(22) are Gaussian), independent in time and mutually independent. Starting from some initial 

Gaussian distribution, the forecast and posterior distributions, p
𝒐

𝒙 |𝒚, . . . , 𝒚ିଵ  and 

p
𝒐

𝒙 |𝒚, . . . , 𝒚  remain Gaussian at subsequent time instants. The algorithm of the KF therefore 

reduces to recursively computing the means and covariance matrices of p
𝒐

𝒙 |𝒚, . . . , 𝒚ିଵ  and 

p
𝒐

𝒙 |𝒚, . . . , 𝒚 , which fully characterize their distributions. These represent the forecast and 

analysis MAPs (and MVs, which are identical in this case) and their errors covariance matrices, and 

are computed by recursive cycles of the following forecast and analysis steps. 

Forecast step: Integrate the posterior mean, i.e., analysis state, 𝐱ିଵ
  at time instant tk-1 and the 

associated error covariance 𝐏ିଵ
  forward with the dynamical model (Eq. 11) to compute the 

forecast state 𝐱
 and the associated error covariance 𝐏

 at the time of the next available 

observation tk, as  

 (23a) 

(23b) 

Analysis step: Once the new observation yk is available, update the forecast statistics 𝐱
 and 𝐏

 

to their analysis counterparts, 𝐱
 and 𝐏

, using the BLUE (which is also the MAP here) in Eq. 

7 with B = 𝐏
 , 

 (24a) 

(24b) 

(24c) 

Therefore, the only difference from a 3D assimilation setting is in the use of a time- (or flow-) 

dependent forecast (background) error covariance matrix that is updated in the analysis step as in 

Eq. 24b to account for the reduction in the estimation error (uncertainties) after the assimilation of 

an observation. The resulting analysis error covariance is then integrated by the model forward as 

in Eq. 23b to reflect an increase, or eventual decrease, in the initial analysis error during forecasting, 

depending on the ocean dynamics during that period (Pham et al., 1997), plus the contribution of 

the model errors. 
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Figure 17.3. Schematic illustration of the different filtering strategies presented in Section 4. The Kalman filter 
(KF) only involves Gaussian distributions, characterized by their mean and covariances. Both the ensemble 
Kalman filter (EnKF) and the Particle filter (PF) integrate a set of ocean states sampled from the present 
distribution forward during the forecast step. While the EnKF assumes Gaussian background at the analysis 
step so that the forecast ensemble is updated with the incoming observation as in the KF, the PF applies a non-
Guassian update to the samples weights only. The Gaussian mixture filter (GMF) maintains Gaussian mixture 
distributions at the forecast and analysis steps, in which the mixture weights are updated as in the PF and the 
mixture covariances as in the KF. As the EnKF, the ensemble GMF (EnGMF) integrates an ensemble of ocean 
states at the forecast step, but assumes Gaussian mixture background so that it applies a GMF analysis. 
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The application of the KF for ocean DA is hampered by (i) the nonlinear nature of the ocean 

dynamics (and eventually of some ocean observations), and (ii) the large dimension of the OGCMs 

(which is reaching up to n ∼ O(1010) in today’s numerical ocean models). The first means that the 

KF cannot be directly implemented, and the second implies prohibitive computational burden (in 

term of storage and computation) in order to manipulate the KF error covariance matrices, of 

dimensions n × n. Different simplified variants of the KF have been therefore proposed for ocean 

data assimilation, which can be split into two main categories, reduced extended Kalman filters and 

ensemble Kalman filters. 

Reduced Extended Kalman Filters (REKFs) 

To apply the KF to ocean assimilation problems, one can compute the forecast state as in Eq. 23a 

by just integrating the analysis state forward with the nonlinear model. Implementing the KF 

forecast error covariance calculation step (Eq. 23b) is, however, not as straightforward. A popular 

approach is to linearize the model (and eventually the observation operator) using, for instance, a 

first-order Taylor expansion, and then apply the KF to the linearized system. This leads to the 

popular, but no longer optimal, extended Kalman filter (EKF) (Jazwinski 1970), and eventually its 

higher-order variants depending on the retained order of the Taylor expansion (Anderson and 

Moore, 1979; Simon, 2006). 

To avoid the prohibitive computational requirements of the EKF due to the large numerical 

dimension of realistic ocean models, different forms of reduced-state space or reduced-error space 

(i.e., low-rank error covariance matrix) approximations have been proposed (e.g., Fukumori and 

Malanotte-Rizzoli, 1995; Cane et al., 1996); Cohn and Todling, 1996; Verlaan and Heemink, 1997; 

Pham et al., 1997; Lermusiaux and Robinson, 1999; Farrell and Ioannou, 2001; Hoteit et al., 2002). 

A common feature of these REKFs is that they exploit information from a representative subspace 

of the full ocean state, or error subspace, and ignore information from the less influential 

complement subspace. This is supported by the dissipative and driven nature of the ocean dynamics, 

which concentrates energy at large scales, imposing a red spectrum of variability (Daley, 1991; 

Pham et al., 1997; Lermusiaux and Robinson, 1999). Consequently, EKF calculations are conducted 

on the retained subspace only, dramatically reducing the computational cost. The reduced state/error 

spaces, denoted by L, can be set invariant in time, as in the reduced order EKF (ROEKF), or left to 

evolve with the model dynamics as in the singular evolutive extended Kalman (SEEK) filter, with 

the latter leading to more robust state estimates during periods of strong ocean variability (Hoteit 

and Pham, 2003). Both schemes operate with low-rank r EKF error covariance matrices, with r the 

dimension of the reduced space, while keeping the rest of the EKF algorithm mostly unchanged. 

The error covariance matrices are only evaluated through their low-rank counterparts, L and U, 

where P = LULT and U a r × r matrix representing the error variance in the reduced space, which 

avoids the storage of P and drastically reduces the EKF computational burden. More details can be 

found in Cane et al. (1996) and Pham et al. (1997). One caveat of this approach is in the treatment 

of the model error covariance matrix Q in Eq. 23b, as the rank of the forecast error covariance 

matrix P cannot indeed be preserved after adding Q unless the model error is projected on (and 
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therefore only treated in) the reduced space L, or simply neglected assuming perfect model (Q = 0) 

(Hoteit et al., 2007). This implies another approximation in the final EKF algorithm and would 

inevitably lead to an underestimation of the forecast error covariance. 

REKFs have been applied to ocean DA in the global ocean as part of the Estimating the 

Circulation and Climate of the Global Ocean Data Assimilation Experiment (ECCO-GODAE) 

system (Kim et al., 2006), in the Pacific Ocean (Cane et al., 1996; Verron et al., 1999; Hoteit et al., 

2002), and regionally in a nested implementation of the Ligurian Sea (Barth et al. 2007). They are 

also used operationally in, for instance, Monterey Bay (Haley et al., 2009), the Greek national 

POSEIDON-II system for the Mediterranean (Korres et al., 2010), and the European MERCATOR 

system (Lellouche et al., 2013). Given the complexity of the linearization step and its limitation 

with strongly nonlinear models (Evensen, 1994), as well as the difficulty of specifying and evolving 

a reduced subspace, these methods have dramatically lost popularity in recent years owing to the 

advances in ensemble Kalman filtering methods. 

Ensemble Kalman Filters (EnKFs) 

The main idea behind the EnKFs is to apply a Monte Carlo-like forecast step to integrate the KF 

analysis state and its error covariance forward through a set, or ensemble, of ocean states sampled 

from these two statistical moments (Evensen, 2003). The sampled analysis ensemble is then 

integrated forward with the (nonlinear) model to obtain the forecast ensemble, from which the 

forecast state and error covariance are taken as the sample mean and covariance of the ensemble. A 

KF analysis step is then applied to update the forecast ensemble every time a new observation is 

available. The ensemble formulation allows to avoid the manipulation of the KF error covariance 

matrices by performing the calculations on the ensemble members, which enables the 

implementation of the filter on large-scale ocean applications. Generally speaking, the Monte-Carlo 

forecast step requires N (= ensemble-size) ocean model integrations to compute the forecast 

ensemble, and the KF update step is applied in the low-rank ensemble subspace, typically of a 

dimension N − 1 (Pham, 2001). Another important advantage of the Monte Carlo forecast step is 

the possibility of implicitly accounting for the model errors through perturbations sampled from 

their distributions and then carried with the ensemble model runs (Evensen, 2003; Hoteit et al., 

2007). This further allows avoiding the additive model error assumption, which is otherwise less 

general and difficult to account for in the REKFs (Pham et al., 1997; Hoteit et al., 2005b). 

Because of their non-intrusive formulation and ease of implementation, remarkable robustness 

and effectiveness, and reasonable computational requirements, EnKF methods have become very 

popular in the geosciences. Many variants of the EnKF have been proposed in the literature, but a 

full review is beyond the scope of this chapter. They all operate as cycles of Monte Carlo forecast 

and KF update steps involving only the first two moments of the ocean state posterior, basically 

only differing in the sampling scheme of their analysis ensembles. Depending on whether the 

observations are perturbed before assimilation or not, the EnKFs are customarily classified as one 

of two types (Tippett et al., 2003): stochastic EnKFs (Burgers et al., 1998; Houtekamer et al., 2005; 

Hoteit et al., 2015) and deterministic EnKFs (Anderson, 2001; Bishop et al., 2001; Whitaker and 
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Hamill, 2002; Hoteit et al., 2012; Luo and Hoteit, 2014c). A stochastic EnKF essentially updates 

each forecast ensemble member with perturbed observations during the KF correction step. By 

contrast, a deterministic EnKF updates the ensemble mean and a specific (square-root) form of the 

sample (ensemble) error covariance matrix exactly as in the KF, without perturbing the 

observations. An analysis ensemble is then produced from the updated mean and covariance prior 

to the forecast step. The most popular deterministic EnKFs with publicly available codes are the 

singular evolutive interpolated KF–SEIK (Pham, 2001; Hoteit et al., 2002), the ensemble transform 

KF–ETKF (Bishop et al., 2001; Wang et al., 2004; Hunt et al., 2007), and the ensemble adjustment 

KF–EAKF (Anderson, 2001, 2009). With the continuous advances in computing capabilities, EnKF 

methods are becoming increasingly popular in the development of ocean operational systems, e.g. 

Toye et al. (2017). An EnKF is, for instance, already used operationally in the Norwegian North 

Atlantic and Arctic forecasting system, TOPAZ (Sakov et al., 2012). Below we focus on presenting 

the algorithms of the two “basic” forms of ensemble Kalman filtering; the original stochastic EnKF 

(Burgers et al. 1998; Houtekamer and Mitchell 1998) and two standard, closely-related 

deterministic EnKFs. 

1) STOCHASTIC EnKF (SEnKF) 

Assume an N-member analysis ensemble 𝐗ିଵ
  = [𝐱ିଵ

, , i = 1, 2 … , N} is available at the end of 

the (k − 1)th assimilation cycle. The forecast ensemble at the next time tk is obtained by integrating 

𝐱ିଵ
,  with the dynamical model (11), i.e. 

(25) 

where 𝜂
  are sample dynamical noise drawn from the distribution of the model error term. The 

ensemble sample mean and covariance are taken as the forecast state and its error covariance matrix, 

respectively as 

 

(26) 

In practice, 𝐏
 needs not be calculated. Instead, it is customary to approximate 

 

 (27) 

  

 

where 

  

 

 (28) 

which enables to avoid the linearization of the nonlinear observation operator. The Kalman gain Kk 

is then approximated as 

(29) 
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When a new observation yk is available, one computes the analysis ensemble from the forecast 

ensemble using the KF update step, as 

 
(30) 

where 𝐲
ఌ, are perturbed observations generated by adding to the observation yk random 

perturbations sampled from the distribution of the observational error. Accordingly, the sample 

mean and covariance of the analysis ensemble 𝐗
 = {𝐱

, : i = 1, ꞏ ꞏ ꞏ , N} are obtained in the spirit 

of Eq. 26, and the observations perturbations guarantee that they converge to the KF analysis and 

its error covariance with increasing ensemble size N. Integrating 𝐗
 forward to the time of the next 

available observation, one starts a new assimilation cycle, and so on. 

The first two moments of the SEnKF analysis may only asymptotically match those of the KF 

(Evensen, 2003). In this sense, the SEnKF update step always introduces noise during the analysis 

(Nerger et al., 2005). The noise may become pronounced in typical oceanic data assimilation 

applications where the rank of the observational error covariance matrix Rk is much larger than the 

ensemble size, meaning that Rk will be greatly under-sampled (Altaf et al., 2014). Spurious 

correlations between the observation perturbations and the forecast perturbations could also lead to 

errors in the EnKF sample analysis error covariance matrices (Pham, 2001; Bowler et al., 2013). To 

mitigate this issue, one can either introduce a certain correction scheme as in Hoteit et al. (2015), 

or simply avoid perturbing the observations following a deterministic EnKF formulation, which 

will be discussed next. In the opposite case, that is when the ensemble size is larger than the number 

of observations, the SEnKF was shown to perform better than other EnKFs without perturbations 

in many situations (Anderson, 2010; Hoteit et al., 2012). Lawson and Hansen (2004) argued that 

the observation perturbations in the SEnKF tend to re-Gaussianize the ensemble distribution to 

explain the improved stability. Lei et al. (2010) also demonstrated that the SEnKF is generally more 

stable in certain circumstances, especially in the presence of wild outliers in the data. An important 

advantage of the SEnKF update step is that it readily provides an analysis ensemble for forecasting 

(that is randomly sampled from the assumingly Gaussian analysis distribution), avoiding the 

deterministic updating step that may distort some of the features of the forecast ensemble 

distribution as in the other ensemble KFs without perturbations (Lei et al., 2010; Hoteit et al., 2015). 

This allows more straightforward implementation of some auxiliary techniques, such as covariance 

localization and hybrid schemes, as will be further discussed below. 

2) DETERMINISTIC EnKFS (DEnKFS) 

The DEnKFs analysis ensemble is deterministically generated in order to perfectly match the KF 

estimate, and thus avoid the random perturbations of the SEnKF. There are infinite ways to match 

a mean and a covariance by an ensemble and accordingly various DEnKFs have been proposed, 

many of which are based on the square-root formulation of the KF, which was introduced as an 

approach to improve the stability of the KF by working on a certain square-root of the filter 

covariance matrix. Anderson (2001), Bishop et al. (2001), and Whitaker and Hamill (2002) 

exploited the readily square-root form of the ensemble-based covariances to propose deterministic 

EnKFs assimilating the data serially, one at a time, assuming uncorrelated observational errors (i.e., 
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diagonal Rk)1. This enables efficient (parallel) assimilation of very large number of observations 

(Houtekamer and Zhang, 2016). In contrast, the ensemble transform Kalman filter (ETKF; Bishop 

et al., 2001) and the singular evolutive interpolated Kalman (SEIK) filter (Pham, 2001; Hoteit et 

al., 2002) can directly handle any form of Rk by computing the analysis increment in the ensemble 

subspace. To assimilate large numbers of observations, one may apply local analysis steps using 

only neighbor observations (as in optimal interpolation), which needs to be used anyway to deal 

with the low-rank nature of ensemble sampled covariances, as will be further discussed below. 

Here, we present the ETKF for illustration and discuss its similarities with SEIK (Nerger et al., 

2012). Following the same forecast step as the SEnKF, a forecast ensemble 𝐗
 = {𝐱

, , i = 1, ꞏ ꞏ ꞏ 

, N} is available at time tk as in Eq. 25, with the forecast state as the sample mean 𝐱
 and its error 

covariance as 𝐏
 given by Eq. 26. Instead of directly working on 𝐏

, one first constructs a square-

root 𝐒
 of 𝐏

 from the forecast ensemble perturbations, 

(31) 

and its equivalent in the observation space, 

. (32) 

ETKF updates the ensemble forecast and error covariance exactly as in the KF, using Eqs. 24a and 

24c, 

 (33a) 

(33b) 

whereas the covariance update formula (Eq. 24b) can be computed as 

 (34a) 

(34b) 

where IN is the N-dimensional identity matrix. A spectral decomposition is then applied, so that 

 
where Ek consists of eigenvectors of ሺ𝐒

ሻT 𝐑
ିଵ 𝐒

, and Dk is a diagonal matrix whose diagonal 

elements are the corresponding eigenvalues. One can then express Vk as 

(35) 

so that 

(36) 

                                                 
1 For correlated observational errors, one may transform the observations by the inverse of the square-root of 
the observation error covariance matrix Rk to obtain a new set of uncorrelated observations that could be 
serially assimilated. 
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Accordingly, the analysis ensemble 𝐗
 = {𝐱

,, i = 1, ꞏ ꞏ ꞏ , N} can then be generated using 

(37) 

where (𝐒
 ) denotes the ith column of 𝐒

, so that the sample covariance of 𝐗
 is exactly 𝐏

. This, 

however, does not guarantee that its sample mean is 𝐱
 in Eq. 33a unless 

(38) 

To avoid this bias, Wang et al. (2004) latter followed SEIK formulation and proposed to take 𝐒
 = 

𝐒
TkZk , where 

(39) 

with 1 being a vector whose elements are all 1s. Another feature of the SEIK filter is the use of a 

“random” matrix Zk, aiming at “redistributing” the error variance among the ensemble members to 

help in the mitigation of ensemble degeneracy (Sakov and Oke, 2008). 

Many other variants of the KF are implemented in a similar way to the DEnKFs, i.e. ensemble 

forward propagation for forecasting and Kalman-based update with the observations, with the only 

differences in the formulation of the analysis step to update the forecast ensemble to the analysis 

ensemble. We cite here, for example, the unscented Kalman filter Julier et al. (2000); Julier and 

Uhlmann (2004); Luo and Moroz (2009), the divided difference filter (Ito and Xiong, 2000; Luo et 

al., 2012). However, these generally require an ensemble size that is larger than the dimension of 

ocean state, which makes them prohibitive for large-scale applications. In contrast, the EnKF 

formulation is more efficient and has found numerous applications in many ocean data assimilation 

problems. 

3) ENSEMBLE OPTIMAL INTERPOLATION (EnOI) 

Integrating large ensembles with an OGCM is computationally demanding. Following the optimal 

interpolation formulation of the DA problem, which uses a static pre-selected background 

covariance in the update step, ensemble optimal interpolation (EnOI) methods were proposed 

(Evensen, 2003; Hoteit et al., 2002; Oke et al., 2007). EnOI is a very cost-effective alternative to an 

EnKF, in which the static background covariance is estimated as the sample covariance matrix of 

an adequately pre-selected ensemble, generally describing the error growing modes or representing 

the variability of the studied ocean. Ocean large-scale dynamics evolve slowly within relatively 

short time windows, which justifies keeping the ensemble members static in time or over certain 

periods (Hoteit et al., 2002). In doing so, the EnKF reduces to an OI scheme in which only the 

analysis mean is integrated forward with the model for forecasting. The update step could be 

implemented based on a stochastic (e.g., SEnKF) update scheme (Counillon and Bertino, 2009) or 

a deterministic (e.g. SEIK) update scheme (Hoteit et al., 2002). Dropping the model integration of 

the ensemble members from the EnKF algorithm not only allows to drastically reduce the 

computational burden, but also to avoid the degeneracy of its members (more on this below). The 

method was found to be quite competitive compared to an EnKF at a fraction of the computational 

cost (Hoteit et al., 2002; Oke et al., 2007; Sakov and Sandery, 2015; Toye et al., 2017). However, 
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its performance may be limited during periods of rapidly evolving dynamics, which are generally 

not well captured by a static background covariance (Hoteit et al., 2002; Hoteit and Pham, 2004). 

To account for the seasonal and intra-seasonal variability of the ocean flow, Xie and Zhu (2010) 

proposed to implement EnOI with an ensemble selected at every assimilation cycle from monthly 

climatology ocean states with a three-month moving window centered at the assimilation time. 

Currently, EnOI is used operationally in the Australian Bluelink system (Oke et al., 2008). 

4) AUXILIARY TECHNIQUES TO ENHANCE THE PERFORMANCE OF ENKFS 

Realistic EnKF ocean data assimilation problems are typically implemented with small ensembles 

of the order of 100 members or less (Aanonsen et al., 2009; Hoteit et al., 2015; Houtekamer and 

Zhang, 2016) to restrict the computational cost. The downside of using small ensembles is, however, 

twofold: (i) rank-deficient (low rank or degrees-of-freedom) forecast/background ensemble 

compared to the ocean state and observations dimensions (Hamill et al., 2009; Houtekamer and 

Zhang, 2016), and (ii) important Monte Carlo sampling errors (Anderson, 2012; Hamill et al., 2001; 

Luo et al., 2018). Together with the ubiquitous nonlinearity of the ocean dynamics, the 

implementation of EnKFs with small ensembles for OGCM DA requires explicit compensation for 

the effects of a finite ensemble. For instance, Bocquet et al. (2015) derived a prior probability 

density function conditional on the background ensemble to account for the sampling errors due to 

a small ensemble. Iterative methods were also introduced in the framework of the EnKFs to deal 

with strong nonlinearities. Many other auxiliary techniques have been proposed in the literature, 

including the most popular ones presented here: covariance inflation, localization, and hybrid 

covariance. 

(i) Covariance inflation: As suggested by its name, covariance inflation “inflates” the covariance 

of an EnKF forecast, or analysis, ensemble by some positive factor at each assimilation cycle. The 

rationale behind covariance inflation can be explained from different points of views. It is, for 

instance, often justified based on the observation that the EnKF ensemble covariances are 

systematically underestimated due to the effect of finite ensembles (Whitaker and Hamill, 2002) 

and/or to account for neglected model errors (Pham et al., 1997; Hoteit and Pham, 2004). This helps 

mitigateg the ensemble collapse due to a lack of spread. In such cases, covariance inflation may be 

directly applied to the background ensemble through either an additive (Houtekamer and Mitchell, 

2005; Lee et al., 2017; Yang et al., 2015) or multiplicative (Anderson and Anderson, 1999; 

Anderson, 2007a, 2009; Miyoshi, 2011) factor, or to the analysis ensemble through a certain 

relaxation term (Whitaker and Hamill, 2012; Zhang et al., 2004). An alternative point of view is to 

relate covariance inflation to robust filtering (Luo and Hoteit, 2011) in the context of an ensemble 

implementation of the H∞ filter (Simon, 2006). This leads to different forms of inflation, including 

the conventional additive, multiplicative, or relaxation methods, and also encompasses the less 

conventional inflation methods such as those modifying the eigenvalues of the estimation error 

covariance in the ensemble space (Altaf et al., 2013b; Ott et al., 2004; Bai et al., 2016). 

In practice, the value of the inflation factor is often set by trial and error, but adaptive inflation 

methods, spatially and in time, have gained popularity recently (e.g., Hoteit et al., 2002; Anderson, 

2007a; Anderson, 2009; Li et al., 2009a; Bocquet, 2011; Luo and Hoteit, 2013; Miyoshi, 2011; and 
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Lee et al., 2017). In Anderson (2009), the inflation factor is treated as a random variable, and is then 

updated at each assimilation cycle. Similar ideas have been applied by Li et al. (2009a), Miyoshi 

(2011), and Gharamti (2018). Other approaches to “estimating” the value of the inflation factor 

have been also proposed, including the use of the forecast error statistics to guide the choice of the 

inflation factor to stabilize the EnKF and prevent filter divergence (Hoteit et al., 2005b; Luo and 

Hoteit, 2013, 2014c; Lee et al., 2017). 

(ii) Localization: A small ensemble not only introduces spurious correlations between physically 

uncorrelated model variables in the ensemble covariance, but also provides limited degrees-of-

freedom (rank of the ensemble) to fit the observations (Whitaker and Hamill, 2002). A 

straightforward way shown to be very efficient in many applications for dealing with such problems 

is to taper the long-range correlations in the EnKFs ensemble covariance matrices (Hamill et al., 

2001; Houtekamer and Mitchell, 1998), a technique known as “localization.” Most localization 

schemes are based on the distances between the physical locations of model variables and/or 

observations. For instance, Houtekamer and Mitchell (1998) introduced a local analysis scheme that 

updates an ocean state variable using only the observations located in its neighborhood. Hamill et 

al. (2001) adopted a covariance localization scheme in which one replaces the background 

covariance matrix with a Schur product between the background covariance matrix and a tapering 

matrix, whereas each element of the tapering matrix is computed using the Gaspari-Cohn function 

that depends on the physical distance between a pair of model variable and an observation (Gaspari 

and Cohn, 1999). For large-scale problems, directly manipulating the background covariance may 

become quite demanding in terms of computer memory. To alleviate this problem, other localization 

schemes have been proposed in which the Schur product is conducted between a certain tapering 

matrix and other quantities, such as the cross-covariance matrix between the forecast state and 

observation ensembles, the covariance matrix of the forecast observations ensemble (Houtekamer 

and Mitchell, 2001), and the Kalman gain matrix (Anderson, 2007b; Zhang and Oliver, 2010), or 

even the ensemble of forecast perturbations (Sakov and Bertino, 2011). Alternatively, to reduce the 

size of the involved matrices, localization has been also implemented in the observation space 

(Fertig et al., 2007) and in the context of a local EnKF (Bishop and Hodyss, 2007; Hunt et al., 2007; 

Ott et al., 2004). 

The distance-based localization methods discussed above require that both the model variables 

and the observations have associated physical locations. In certain applications, however, some 

ocean variables/observations may not be associated with a physical location, e.g. non-local or 

spatial-temporal (or 4D) observations such as acoustics. In these situations, it becomes difficult to 

“localize” such observations with a distance-based localization method (Bocquet, 2016; Fertig et 

al., 2007; Luo et al., 2018). Therefore, adaptive localization methods have been proposed, some of 

them not based on physical distances. For instance, Bishop and Hodyss (2007) conducted a Schur 

product between the background error covariance matrix and a tapering matrix, whereas the latter 

was conducted by raising each element of a sample correlation matrix of model variables to a certain 

power. Anderson (2007b) and Zhang and Oliver (2010) used multiple background ensembles to 

compute a set of Kalman gain matrices, and then constructed the tapering matrices based on the 
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sample statistics of the Kalman gain matrices. Anderson (2012, 2016) and De La Chevrotiѐre and 

Harlim (2017) also proposed localization methods correcting for sampling errors of the correlation 

coefficients between the pairs of model variables and observations. Sample correlation coefficients 

were also used in adaptive localization schemes (Evensen, 2009; Rasmussen et al., 2015a). More 

recently, Luo et al. (2018) elaborated on how to “localize” non-local and/or 4D observations through 

detections of causal relations between model variables and simulated observations. 

(iii) Hybrid covariance: The use of small ensembles generally means that a significant part of the 

state (error) space is not represented by the ensemble. This implies that the ensemble subspace will 

not offer enough degrees-of-freedom to fit a large number of observations, and produces unrealistic 

confidence in the filter forecast (Song et al., 2010). The hybrid EnKF-OI/3DVAR method (Hamill 

and Snyder, 2000) is another approach that one could consider to enhance the performance of the 

EnKF without significantly increasing its computational cost. In this method, and at every 

assimilation cycle, the filter forecast covariance is estimated as a linear combination of a flow-

dependent ensemble covariance sampled by an EnKF and a (pre-selected) static background 

covariance, i.e., 

(40) 

as a way to compensate for the complement of the ensemble’s subspace α and β are tuning 

parameters that are usually set by trial and error, but could also be optimized adaptively as in 

Gharamti et al. (2014a). This technique has been successfully applied in several ocean applications 

(see e.g. Counillon and Bertino, 2009; and Tsiaras et al., 2017) and was shown to be quite efficient 

at improving the EnKFs robustness and performances. 

Other forms of hybrid methods have been also proposed, for example, the semi-evolutive SEIK 

filter (Hoteit et al., 2001) in which only a selected part of the ensemble is updated by the model, 

and the adaptive EnKF, which selects new members from a static ensemble to enrich the EnKF 

ensemble based on the analysis error (Song et al., 2010). 

Computing the ensemble SEnKF update based on a hybrid covariance is rather straightforward; 

obtaining it from a square-root EnKF is not (Bocquet et al., 2015; Auligné et al., 2016). Currently, 

many DA systems, including most operational ones, make use of hybrid covariances. 

(iv) Iterative EnKFs: To handle nonlinear observations, one may adopt an iterative optimization 

scheme for the update step, similar to the variational DA methods (Courtier et al., 1994). In the 

context of ensemble DA, one may interpret iterative methods through a Bayesian perspective 

(Emerick and Reynolds, 2012). Alternatively, one can recast ensemble DA as a stochastic 

optimization problem (Oliver et al., 1996), and solve the problem using different optimization 

algorithms. Various iterative methods were introduced in the context of the EnKF (Zupanski, 2005; 

Gu and Oliver, 2007; Lorentzen and Nævdal, 2011; Sakov et al., 2012; Bocquet and Sakov, 2012; 

Luo and Hoteit, 2014c; Gharamti et al., 2015a), the ensemble smoother (EnS) (Emerick and 

Reynolds, 2012; Chen and Oliver, 2013; Luo et al., 2015), and the iterative ensemble Kalman 

smoother (IEnKS) (Bocquet and Sakov, 2014). 
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Non‐Gaussian Filtering 

The different Kalman filter options presented above are all based, in some way or another, on 

Gaussian distributions for the background/forecast and the noise (and linear observation operator). 

Given the nonlinear nature of the ocean dynamics, the forecast distribution will not be Gaussian 

even when the analysis distribution at the previous step is Gaussian. As such, all Kalman-type filters 

are sub-optimal in the context of nonlinear Bayesian filtering. Relaxing the assumption of Gaussian 

distributions is an active area of research in ocean DA. This field is very well developed in the 

mathematics and electric engineering communities, and mathematically sound non-Gaussian 

Bayesian filters have been already developed, the most famous of which is the PF. The excessively 

large dimension of the ocean models means a prohibitive number of realizations to sample the ocean 

state distribution, which precludes any brute force implementation of these techniques for ocean 

DA. Given this hard constraint on the number of samples that could be considered in a realistic 

ocean application, our goal here should be more practical to derive approximate nonlinear/non-

Gaussian Bayesian filtering schemes that are robust and efficient, in terms of computational cost 

and performance, at least competitive with EnKFs, for potential application on realistic ocean data 

assimilation problems. 

Nonlinear/non-Gaussian Bayesian filtering recently became an active area of research in the 

ocean community, which has mainly focused on two types of filters, namely the PF (Gordon et al., 

1993) and the GMF (Sorenson and Alspach, 1971). Both approaches resort to some (truncated) 

statistical mixture models to describe the forecast and analysis distributions of the Bayesian filter, 

so that an approximate numerical solution can be computed. The two filtering strategies are 

summarized below with appropriate references. 

1) PARTICLE FILTERING (PF) 

The PF uses mixture models of Dirac delta densities (or a random set of ocean states) to 

approximate/discretize the prior (forecast) and posterior (analysis) state distributions. More 

specifically, suppose that at the (k − 1)th assimilation cycle, the posterior is approximated by 

(41) 

where δ denotes the Dirac delta function, 𝐱ିଵ
,  are the particles at the analysis step (similar to the 

ensemble members in the EnKF), 𝑤ିଵ
  are the associated weights, and N is the total number of 

particles. The parameters of this mixture are then updated recursively based on the Bayesian filter 

steps (Gordon et al., 1993; Doucet et al., 2001; Van Leeuwen, 2009; Bocquet et al., 2010) as 

follows. 

Forecast step: As in the EnKF, the analysis particles 𝐱ିଵ
,  are integrated forward with the 

dynamical model to obtain the forecast particles 𝐱
, at the next time tk. The associated weights 

𝑤ିଵ
  remain unchanged. 
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Analysis step: The incoming observation yk is used to update the weights only, while the 

particles themselves are kept unchanged, i.e. 𝐱
,= 𝐱

,. Roughly speaking, the particles will see 

their weights increase if they are close to yk and decrease otherwise, according to 

(42) 

where ck is a constant that normalizes the weights of the posterior distribution, but does not need 

to be computed in practice. In the case of Gaussian observational error, the likelihood p(yk|𝐱
,) 

becomes the Gaussian distribution of mean Hk(𝐱
,) and covariance Rk. 

After an analysis (or forecast) step, the MV estimate of the ocean state is then obtained as the 

weighted-average of the particles, i.e. ∑ 𝑤
ே

ୀଵ 𝐱
ሺሻ,. 

The theory of the PF is well established and the convergence of the PF state distribution toward 

the Bayesian filter distribution has been proven given an infinite number of particles (Doucet et al., 

2001). In practice, however, one is restricted to a finite number of particles and the PF will suffer 

from the degeneracy of its particles, a phenomenon in which most of the weights concentrate on 

very few particles after only a few assimilation cycles. The effective number of the particles then 

decreases (Snyder et al., 2008) and the filter often collapses. This happens because the particles 

drift away from the true state, with the observations exerting no feedback on the particles. To 

overcome this, a resampling technique is needed. The basic idea of resampling is to draw new 

particles according to their estimated weights, and then assign them uniform weights (Gordon et al., 

1993). 

Many forms of PFs have been suggested, mainly differing in their resampling strategies. There 

is a rich literature on this topic and readers are referred to, for example, Arulampalam et al. (2002), 

Doucet et al. (2001), Doucet and Johansen (2011), Duan et al. (2010) and the references therein, for 

more information. However, even with resampling, the PF still requires a large number of particles 

to achieve an accurate solution (Doucet et al., 2000b). This makes the brute force implementation 

of the PF for DA with computationally demanding, realistic OGCMs a challenging problem 

(Anderson, 2003; Snyder et al., 2008; Van Leeuwen, 2009). Several strategies are currently being 

investigated to enable the implementation of the PF for large-scale ocean DA problems, many of 

which try to somehow exploit the future observations for efficient sampling of a limited number of 

particles (e.g., Van Leeuwen, 2010; Chorin et al., 2010); split the ocean state into smaller vectors 

to reduce the dimension of the problem, a form of localization (e.g., Ait-El-Fquih and Hoteit, 2016; 

Penny and Miyoshi, 2016; Poterjoy, 2016); or apply some transformation to move the particles 

toward high-probability regions so that a single particle does not dominate the total weight (e.g., 

Luo and Hoteit, 2014a; Reich, 2013; El-Sheikh et al., 2014). A more recent school of thought is 

investigating combinations of the EnKF and the PF (Frei and Künsch, 2013; Shen and Tang, 2015; 

Ait-El-Fquih and Hoteit, 2017), exploiting the robustness of the EnKF and (asymptotic) optimality 

of the PF. 
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2) GAUSSIAN MIXTURE FILTERING (GMF) 

The idea here is to use mixture models of Gaussian densities to approximate the state distributions, 

i.e., of the form 

(43) 

where wi are the weights of each Gaussian component Φ in the mixture of mean xi and covariance 

Pi. The xis are also called particles in analogy to the PF. This is based on Alspach and Sorenson 

(1972) who demonstrated that when the likelihood is Gaussian and the observation operator is 

linear, a Bayesian update of a Gaussian mixture (GM) prior leads to a GM posterior for which the 

parameters of the Gaussian components are updated as in the KF, and their weights are updated as 

in the PF. Two GMF strategies can be then distinguished for ocean DA, depending on whether the 

forecast step is initiated from GM or Dirac mixture (DM) posteriors. If initiated from a GM, 

applying a local linearization around the centers of the Gaussian components of the mixture allows 

to carry the forecast step as a set of EKFs operating in parallel. More precisely, the GM posterior is 

integrated by an ocean model into a GM prior to the next assimilation step with the same weights, 

and centers and covariances computed from their prior counterparts using the EKF (Sorenson and 

Alspach, 1971; Chen and Liu, 2000; Bengtsson et al., 2003; Hoteit et al., 2008). In doing so, the 

prior and posterior distributions always remain as GMs, with the weights updated as in the PF, and 

the parameters of the Gaussian components as in the EKF, or any other nonlinear Kalman filter, 

such as an EnKF, (Hoteit et al., 2008; Luo et al., 2010; Hoteit et al., 2012; Sondergaard and 

Lermusiaux, 2013). This is generally referred to as Gaussian mixture filtering (GMF). If initiated 

from a DM, the forecast step is identical to that of the PF/EnKF, but the GM posterior needs to be 

resampled into a DM before forecasting (after every update step). We refer to this type of filtering 

the ensemble GMF (EnGMF; Anderson and Anderson, 1999; Liu et al., 2015, 2016). Resampling 

is then part of the EnGMF, but could be conducted only when needed (Hoteit et al., 2008, 2012). 

Even though the GMFs are less prone to the degeneracy of their particles, because the PF update of 

its weights is normalized by the covariance of the innovation vector (or observation prediction error) 

instead of the observation error covariance as in the standard PF, particles might still collapse and 

resampling a new GM with uniform weights may improve the filter robustness and performance 

(Hoteit et al., 2008). Another approach to mitigate the weight’s collapse is to somehow follow an 

approach combining EnKF and PF, as suggested by Bengtsson et al. (2003). 

GMFs are basically implemented as an ensemble of nonlinear KFs running in parallel, and as 

such can be computationally very demanding. Hoteit et al. (2008) suggested using a uniform low-

rank covariance for all GM components to reduce the computational burden. Hoteit et al. (2012) 

later investigated a GMF in which each component of the forecast/analysis GM is represented by a 

different ensemble as a way to use a different covariance matrix for each Gaussian component. 

Sondergaard and Lermusiaux (2013) constructed the GM (from the forecast particles) in a reduced 

state space using an expectation-maximization (EM) algorithm. This enabled them to consider a 

variable number of Gaussian components in the GM, which was determined based on the Bayesian 
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information criterion. The implementation of an EnGMF can be more straightforward, as it can be 

conveniently done via an EnKF code since they share the same forecast step, and a Kalman update 

step to each particle (or ensemble member). It is important to realize, however, that the EnGMF 

does not need to perturb the observations and may eventually use a different covariance matrix to 

update each particle depending on how the GM prior is estimated from the forecast particles (Liu 

et al., 2016). Of course one needs to add a resampling step for the EnGMF; a deterministic 

resampling step by analogy to the DEnKF was found beneficial when dealing with a small number 

of particles (Liu et al., 2015), but defining an optimal strategy for resampling from a GM remains 

an open problem. 

Smoothing 

Filters condition the ocean state with past (including current) observations, and are thus naturally 

designed for operational/forecasting settings. In contrast, smoothers condition the ocean state with 

past and future observations, exactly as 4DVAR. As such, smoothing estimates are expected to be 

more accurate than filtering estimates because of the information gain from future observations, and 

are thus more relevant to performing re-analyses. Smoothing is also useful to estimate model 

parameters whose influence on the state may be spread in time. Unlike 4DVAR, which is designed 

to compute the MAP estimator only, smoothers are usually implemented through additional update 

steps of the filters’ estimates, with the future data, involving the associated distributions. 

The ensemble smoothing update presented in this section is based on a linear analysis, which is 

an approximation for nonlinear models. More advanced but significantly more costly schemes that 

could go beyond the Gaussian approximation of the EnKF are available, such as the iterative 

ensemble Kalman smoother (Bocquet and Sakov, 2014) with multi-pass iterative updates. All these 

smoothers should be equivalent with linear model and Gaussian statistics (Cosme et al., 2012), and 

sometimes even with a nonlinear model (Raanes, 2016). 

We are, therefore, interested here in estimating the ocean state xk (in the past) at tk, given all the 

observations up to TL (≥ tk). Let 𝐄
 be the matrix of the forecast ensemble members at tk, column-

wise, and consider the collection of these matrices within the assimilation window [T0 TL]. This 

collection represents an ensemble of trajectories of the model, which can be seen as a prior within 

[T0 TL]. Let 𝐄
 be the matrix of the EnKF-updated ensemble members at tk ∈ [T0 TL] after 

assimilating the observation vector yk. Whatever the EnKF’s choice, the ensemble member updates 

are linear combinations of the prior members, so that one can actually write, 

(44) 

where Tk is an update transform matrix that depends on the observations, the prior and the EnKF 

flavor (Evensen, 2003). In the case of the stochastic and the deterministic EnKFs, these could be 

obtained from Eqs. 29 and 36, respectively.  
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The advantage of expressing the ensemble members, instead of the perturbations, update as in 

Eq. 44 is to include the analysis as part of the transformation. Then, the ensemble update at tl (tk ≤ 

tl ≤ TL) given this observation vector at tk is 

 
(45) 

where Mk:l is the tangent linear model from tk to tl. As a consequence, to perform an update of the 

ensemble at any time within the assimilation window, one just needs to apply the transform Tk on 

the right to the ensemble. This generalizes to the case where T0 ≤ tl ≤ tk ≤ TL by setting 𝐌: ൌ  𝐌:
ିଵ. 

From this translational invariance of the update, which was put forward by Evensen (2003) and 

Hunt et al. (2004), one can build the following ensemble Kalman smoothing (EnKS) algorithm. 

First, run the EnKF throughout the assimilation window up to TL and store the ensemble 𝐄
 and the 

ensemble transform matrices Tl at any time tl where a smoothing analysis is needed. Second, to 

compute the smoothing updated ensemble 𝐄
௦  at tk within the assimilation window, one simply needs 

to apply the translational invariance principle and use the transform matrices from tl to TL: 

(46) 

Hence, this smoother consists of two passes: an EnKF forward run, followed by a retrospective 

update of the ensembles (that need updating). This makes this EnKS a very elegant procedure, but 

with the drawback of requiring important storage. 

Domain localization of the EnKS can be implemented as in the EnKF. A common mistake is to 

enforce inflation, often required by an EnKF, in the forward EnKF pass as well as in the backward 

smoothing pass. Instead, inflation should only be applied in the forward EnKF step, since sampling 

errors counteracted by inflation have already been accounted for in the forward pass. Cosme et al. 

(2010) and Nerger et al. (2014) offer examples of application of the EnKS in ocean data 

assimilation. 

Hybrid Ensemble‐Variational Methods 

As discussed in the previous sections, there are benefits and drawbacks in using an EnKF or a 

4DVAR. The EnKF involves a flow-dependent representation of the errors, via the ensemble. In 

applications involving high-dimensional models, this representation is nevertheless rank-deficient 

and relies on localization. The computational cost of the ensemble propagation is demanding, but 

this can be mitigated by trivial parallelization. On the downside, the EnKF is generally efficient for 

moderate model nonlinearity because of its second-order moments approximation of the error 

statistics. 4DVAR, as a nonlinear variational method, can handle nonlinearities. This, however, 

requires the adjoint of the observation and propagation models, which is a strong technical 

drawback as it is time-consuming to derive and maintain the adjoint code. Moreover, the traditional 

4DVAR does not propagate the flow-dependent error statistics, but only the state analysis. This is 

however mitigated by the possibility of using a full-rank background error covariance matrix, which 

is not possible in a standard EnKF. Finally, 4DVAR does not lend itself easily to parallelization. A 
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full discussion can be found in Lorenc (2003), Kalnay et al. (2007), and Chapter 7 of Asch et al. 

(2016). 

There have been various attempts to merge these two types of methods in order to combine their 

strengths while avoiding some of their drawbacks, which we refer to as hybrid or hybrid ensemble-

variational methods. 

(i) Ensemble of Data Assimilations: To implement flow-dependence of the error representation in 

a DA system, one could consider an ensemble of such systems. The outcomes of the analyses from 

the DA ensemble could then be combined to form a flow-dependent background matrix, as in the 

EnKF. The implementation of such an approach is straightforward, requiring minimal changes to 

an existing operational DA system. It is called ensemble of data assimilations, and has mostly been 

used in National Weather Prediction centers that operate 4DVAR assimilation and, in particular, 

Météo-France (Raynaud et al., 2009; Berre et al., 2015) and the European Centre for Medium-

Range Weather Forecasts (ECMWF; Bonavita et al., 2011, 2012). In such a setting, each 4DVAR 

analysis, indexed by i, uses a different first guess 𝐱
  in the optimization procedure, and perturbed 

observation vectors ሼ𝐲
 }k=0,…,L, as in the SEnKF, to maintain statistical consistency. The 

background covariance is typically a hybrid one as in Eq. 40, comprised of the static covariances of 

the traditional 4DVAR and incorporating the sample covariances from the prior ensemble. The 

resulting ensemble of analyses is then propagated to the next analysis. The sample covariances may 

need to be regularized by localization. In this context, covariance localization has been implemented 

via the so-called α control variable trick (Lorenc, 2003; Buehner, 2005; Wang et al., 2007), or 

using wavelet truncations (Berre et al., 2015). 

(ii) Iterative Ensemble Kalman Filter and Smoother: Most ensemble variational and hybrid methods 

have been designed empirically. By contrast, the iterative ensemble Kalman smoother (IEnKS) has 

been derived from Bayes’ rule (Bocquet and Sakov, 2013, 2014) with well-identified 

approximations. The analysis step of the IEnKS consists in a nonlinear minimization of the 4DVAR 

cost function over an assimilation window [T0, TL], with the goal of estimating the initial state at T0, 

assuming a perfect model. It uses a previously forecast ensemble at T0 to generate second-order 

background statistics in exactly the same way as the ETKF. Different from 4DVAR, the 

optimization is carried out in the space spanned by the ensemble rather than the full state-space. 

This restricts the search of the analysis state, but enables the use of efficient minimization 

techniques such as Gauss-Newton, Levenberg-Marquardt, and trust-region methods. Analogous to 

the strong 4DVAR cost function in Eq. 17, the IEnKS cost function is typically of the form 

(47) 

where w is the vector of unknown coordinates in the ensemble space, 𝐱
 and 𝐒

 are respectively 

the prior ensemble mean and the matrix of the prior ensemble anomalies at T0, and M0:k is the model 

resolvent integrating the ocean state from T0 to tk. The sensitivities of the observations to w required 

for the calculation of the gradient of the cost function can be computed by finite-difference methods, 

or using finite-spread representation as in the EnKF. This avoids the need for the tangent-linear and 
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adjoint models. Once a minimum is found, an approximate Hessian can be obtained at the 

corresponding minimizer in the ensemble space. Just like with the ETKF, this allows to generate an 

updated ensemble of anomalies. In the forecast step, the newly generated ensemble is integrated 

with the model from tL to tL+S, to be used as the prior of the next assimilation cycle. The only 

approximations in the scheme are the Gaussian modeling of the prior and posterior ensemble, and, 

to a lesser extent, the finite-size of the ensemble. 

The “shift” parameter S can obviously be chosen to be L or, more generally, any value between 

1 and L + 1, if all observations are to be assimilated. This degree of freedom, barely exploited in 

4DVAR, is interesting because it allows flexibility in the transfer of information from one 

assimilation window to the next through the ensemble. The case S = 1, L = 0 with a linear 

observation model, coincides with the ETKF (Hunt et al., 2007). The case S = 1, L = 0 and a general 

(nonlinear) observation model coincides with the maximum likelihood ensemble filter (MLEF) 

(Zupanski, 2005). The case S = 1, L = 1 is known as the iterative ensemble KF (IEnKF, Sakov et 

al., 2012; Bocquet and Sakov, 2012). The case S = L with a single iteration in the analysis and 

further mild restrictions corresponds to the 4D-ETKF (Hunt et al., 2004). 

The name smoother comes from Bell (1994), who first proposed an iterative (full-rank) Kalman 

smoother. The IEnKS can be used as a smoother as well as a filter. As opposed to the EnKS, and 

with a nonlinear model, each iteration should improve the filtering solution, i.e., the state estimate 

at the present time. With low-order chaotic models, the IEnKS has been shown to outperform any 

scalable known method such as the EnKF, the EnKS, and 4DVAR, for both filtering and smoothing. 

As any ensemble method, the IEnKF and IEnKS require localization. This is not as 

straightforward to implement as in the EnKF since it should be applied within the full assimilation 

window. Because the dynamics of the error do not generally commute with localization (Fairbairn 

et al., 2014; Bocquet and Sakov, 2014), suboptimalities can appear for long windows. A solution—

the so-called dynamically covariant localization—has been proposed in Bocquet (2016) and yields 

good results with simple models. If the adjoint model is available, then this issue could be dealt 

with in a more efficient way (Bocquet, 2016). 

The IEnKS is a mathematically justified Hybrid Ensemble-Variational method that can also be 

also useful in understanding and rationalizing the so-called Four-Dimensional Ensemble 

Variational (4DEnVAR) methods. 

(iii) Four-Dimensional Ensemble Variational (4DEnVAR): This class of methods was developed 

by the National Weather Prediction centers within a 4DVAR framework. The primary goal was to 

avoid maintaining the adjoint of the forecast model. Like the IEnKS and similar to the reduced 

4DVAR put forward early in oceanography by Robert et al. (2005) and Hoteit and Köhl (2006), the 

analysis is performed within the subspace spanned by the ensemble (Liu et al., 2008). Observation 

perturbations are usually generated stochastically using, for instance, a stochastic EnKF (Liu et al., 

2009; Buehner et al., 2010a). Hence, in addition to avoiding the need for an adjoint model, flow-

dependent error estimation is introduced. The 4DEnVAR implementations usually come with a 

hybrid background. Just like the IEnKS, localization is necessary and theoretically more 

challenging than with an EnKF (Desroziers et al., 2016). Many 4DEnVAR variants have been 



4 96    I B R A H IM  H O T E I T  E T  A L .  
 
 

suggested, depending on the availability of the adjoint models and how the perturbations are 

generated (Buehner et al., 2010a,b; Zhang and Zhang, 2012; Clayton et al., 2013; Poterjoy and 

Zhang, 2015). Several 4DEnVar weather systems are now operational or on the verge of being so 

(Buehner et al., 2013; Gustafsson et al., 2014; Desroziers et al., 2014; Lorenc et al., 2015; Kleist 

and Ide, 2015; Buehner et al., 2015; Bannister, 2017). A recent further sophistication is to construct 

an ensemble of data assimilations of 4DEnVAR in order to generate the perturbations (Bowler et 

al., 2017; Arbogast et al., 2017). 

Discussion and Future Developments 

The theoretical framework of ocean DA methods is now well established around the Bayesian 

estimation theory, and many robust methods have been developed for efficient assimilation of 

available ocean data into state-of-the-art general circulation ocean models. These provide various 

tools to predict the past and/or future state of the ocean, conditioned on available data, and also to 

quantify its uncertainties. Evaluating the uncertainties is important for decision making and proper 

weighting of the most recent estimate against incoming observations for computing the next 

estimate. At present, 4DVAR and EnKFs are the state-of-the-art techniques for ocean data 

assimilation, and most ocean centers are currently developing their operational systems around 

these approaches. Both have been extensively studied and their characteristics are now well 

understood. They were further shown to provide viable solutions in many ocean DA applications. 

4DVAR and EnKF have their own advantages and weaknesses, and this lead to the development 

of a new class of Hybrid Ensemble-Variational methods, aiming at combining the strength of these 

two approaches. The hybrid techniques are currently being actively investigated by the atmospheric 

community, but nothing should preclude their applications for ocean DA. Other advances in the 

developments of auxiliary techniques that were proven important for enhancing the performances 

of 4DVAR and EnKF are also expected to improve the accuracy of the ocean DA products, which 

may include working on more sophisticated parameterizations of (ensemble) covariance matrices, 

enhanced resampling techniques, enforcing dynamical balances and constraints, etc. 

In addition, recent advances in the development of non-Gaussian/nonlinear DA methods for 

large-scale DA problems hold the promise of edging us closer toward the optimal Bayesian 

estimate. These techniques were indeed demonstrated to be superior to EnKFs and 4DVAR in many 

idealized DA problems. However, many challenges still require more investigations into, for 

example, how best to parameterize the involved probability distributions or to resample a 

reasonable-size ensemble/sample from the estimated distributions. These should be further 

complemented by further studies to better understand the relevance of more advanced assimilation 

for the estimation of the various ocean spatial and temporal scales (Subramanian et al., 2012), 

particularly in relation to the associated computational cost and the spatial and temporal coverage 

of the assimilated observations. 

All of these developments focused on introducing new DA techniques or enhancing existing 

ones. Another very important aspect of any assimilation system is the treatment of the underlying 
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uncertainties in the system, which basically characterize the final assimilation solution. These, 

however, have not received the attention they deserve by the ocean data assimilation community, 

with the exception of some uncoordinated attempts to address some of the challenges, and the 

problem remains open. Uncertainties can be inherited from the incomplete ocean models dynamics, 

measurements sensors, and various parameters and inputs. These could also be introduced by poor 

knowledge of the statistics of the modeled noise, which are required by the assimilation algorithms. 

There is a variety of approaches to quantify, reduce, and account for the uncertainties in an 

assimilation system that are yet to be fully exploited by the ocean community. We end this chapter 

with a general discussion and a summary of available promising tools to efficiently handle the 

uncertainties in an ocean DA system. 

(i) State-Parameters Estimation: Various parameterizations are used in the general circulation 

ocean models (e.g., mixing parameters) and, as such, the ocean state depends on a set of (physical) 

parameters that may not be perfectly known. Estimating these parameters along with the state 

should reduce the uncertainties in the system and eventually lead to an improved final assimilation 

solution. 

Estimating the parameters of an ocean model is technically an inverse problem that can be 

addressed by a deterministic (least-squares or variational-like) approach aiming at determining the 

parameters that best fit the model to available data, or as a Bayesian inverse problem computing the 

posterior distribution of the parameters given a prior and the likelihood (e.g., Aster et al., 2005; 

Tarantola, 2005). The first approach is basically an optimization problem, very similar to 4DVAR 

(Wunsch, 1996; Elbern et al., 2007). Markov Chain Monte Carlo (MCMC) is the reference 

numerical method to compute the posterior solution of the Bayesian inverse problem, but it can 

require a prohibitive number of ocean model runs to converge (Metropolis et al., 1953; Malinverno, 

2002; Sraj et al., 2016). Surrogate models have been used to enable the application of such methods 

for large-scale problems, see for example Li et al. (2015), Sraj et al. (2016) and Sripitana et al. 

(2017) for ocean applications. An advantage of DA, even though its methods are often suboptimal, 

is that its framework may allow for joint state-parameters estimations. The 4DVAR framework 

readily enables for ocean parameters estimation (Wunsch and Heimbach, 2007; Liu et al., 2012) 

within a strong or weak constraint formulation, but it is an offline approach. The recursive nature 

of filters and smoothers allows for simultaneous online estimation of the state and parameters, and 

accordingly straightforward updates with new observations. 

The technical framework for online estimation of the state and the parameters of a dynamical 

system based on observations is well established (Harvey and Phillips, 1979; Pagan, 1980; 

Hamilton, 1986; Aksoy et al., 2006; Rasmussen et al., 2015b; Ait-El-Fquih et al., 2016) and is 

already being heavily exploited in hydrology and subsurface flow applications (e.g., Oliver and 

Chen, 2011; Moradkhani et al., 2005; Gharamti et al., 2015b). It has been recently applied in the 

context of a storm surge ocean model by Sripitana et al. (2018). Within the Bayesian estimation 

framework, and similarly to the state, the parameters are treated as random variables with a given 

prior distribution. The state-parameters estimation problem then consists of computing the 

distribution of the augmented (or joint) state-parameters vector, say [x, 𝜃], conditioned on available 
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observations. The assimilation methods presented in this chapter can be then directly used to address 

this problem by applying them to [x, 𝜃] instead of x, assuming constant dynamics for the time-

evolution of the parameters. This is the joint state-parameters estimation approach. Another method 

that became popular more recently is the so-called dual approach, which consists of separately 

updating the state and the parameters using two interactive filters, one acting on the parameters and 

the other on the state given the parameters. This approach is commonly referred to as Rao-

blackwelisation in the PF community where it has been introduced to reduce the variance of the 

joint state and parameters estimation (Doucet et al., 2000a). It was applied early on in an ensemble 

context in hydrology (Moradkhani et al., 2005) to mitigate for noticeable inconsistencies issues in 

the joint approach (Chen and Zhang, 2006), but only recently was used in a Bayesian consistent 

framework (Ait-El-Fquih et al., 2016). The dual estimation approach has been proven to be 

especially beneficial in strongly nonlinear applications (Gharamti et al., 2014b; Ait-El-Fquih et al., 

2016). 

Another state-parameters estimation problem that is important to address considers the statistical 

parameters instead of (or together with) the physical parameters. This mainly involves the 

parameters of the dynamical model errors and observations noise distributions (Särkkä and 

Hartikainen, 2013; Ardeshiri et al., 2015), and could be particularly useful in the context of 

stochastic parameterizations. It should help sampling relevant stochastic terms based on the 

available data and the dynamics in hand. 

The most common approach to simultaneously estimate these so-called hyper-parameters along 

with the state consists of maximizing the likelihood of the whole set of available observations given 

these parameters (Hamilton, 1986). However, because of the complexity of the likelihood function, 

an analytical evaluation of the maximum likelihood estimate of the hyper-parameters is generally 

not feasible. A number of approximate numerical solutions have therefore been proposed, mostly 

relying on gradient-based iterative optimization methods (Harvey and Phillips, 1979; Pagan, 1980). 

To overcome the common limitations of gradient-based methods, the popular iterative Expectation-

Maximization (EM) algorithm has been first introduced to linear systems (Shumway and Stoffer, 

1982), and later extended to nonlinear systems involving PF- and EnKF-like assimilation algorithms 

(e.g., Cappé et al., 2005; Stroud and Bengtsson, 2007; Frei and Künsch, 2012; Ueno et al., 2010; 

and Dreano et al., 2017). The EM iterations alternate between an expectation (E) step, which 

constructs an expectation-type cost function of the log-likelihood evaluated at the parameters 

current estimate, and a maximization (M) step, which computes new parameters maximizing the 

expected log-likelihood created in the E step. The resulting parameters’ estimates are then used to 

determine the distribution of the hyper-parameters in the following E step. 

More recently a Bayesian approach has been proposed, considering the hyper-parameters as 

random variables with a prior distribution, commonly a Wishart distribution. This leads to a 

posterior that is also a Wishart distribution and for which sufficient statistics can be obtained in 

closed forms (Robert, 2007). The Bayesian approach is an online procedure that computes a new 

estimate at each observation time step, while the maximum likelihood approach is viewed as an off-

line (or smoother) approach. Furthermore, the maximum likelihood approach computes only a point 
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estimate of the hyper-parameters, while the Bayesian approach provides a full distribution from 

which any (point) estimate can be obtained. 

(ii) Accounting for Model Errors: It is important to properly quantify the statistics of the forecast 

(background) in the assimilation (Dee, 1995; Li et al., 2009b). In the description of the state-space 

model (dynamical and observation models) of the DA problem, model errors were traditionally 

represented as white noise, Gaussian of mean zero and a given covariance. This assumption is at 

the basis of the KF- and 4DVAR- like assimilation algorithms, even though the contribution of this 

additive error term, through its covariance, is often treated crudely or even neglected. The model 

bias, or mean of model errors, can be conveniently treated as a state-parameters estimation problem 

(Zupanski and Zupanski, 2006) or closely related techniques (Dee and da Silva, 1998; Chepurin et 

al., 2005). This can be further extended to the case of time-dependent bias, for which a 

computationally efficient scheme expressing the errors in terms of very few degrees-of-freedom has 

been proposed by Danforth and Kalnay (2008). The dimension of the model error covariance can 

be prohibitively large; accurately estimating its coefficients would require a large amount of data 

that is simply not available (Mehra, 1970). 

In 4DVAR, the model error is accounted for as a control term in the objective cost function 

(Trémolet, 2007). Strong constraint 4DVAR completely ignores it to simplify its optimization 

problem, projecting all errors on the initial conditions or further on other model parameters and 

inputs in slightly modified variants. Weak constraint 4DVAR methods, such as the representer 

method, provide elegant ways to directly tackle the problem but the end result heavily depends on 

the specification of appropriate model error covariance matrices to properly weight these terms in 

the cost function and spread the information to non-observed locations (Di Lorenzo et al., 2007). 

Imposing dynamical constraints is also important, as for the background covariance (Ngodock and 

Carrier, 2014). 

EnKFs (smoothers) algorithms can directly handle the model error covariance matrix as in the 

KF (smoother), but this is not as straightforward for the large dimensional ocean DA problem. In 

this context, it is more efficient to exploit the Monte Carlo framework of the ensemble methods and 

account for the model errors through perturbations sampled from given statistics (covariance) 

(Mitchell and Houtekamer, 2000; Hamill and Whitaker, 2005; Hoteit et al., 2007), as in a fully 

nonlinear DA scheme. Likewise, this could be also applied in the case of non-additive noise, e.g. as 

a stochastic parameterization scheme (Buizza et al., 1999; Wu et al., 2008). These methods, or a 

combination of them, may provide an efficient approach, computationally and dynamically, to 

account for ocean models errors in an ensemble (nonlinear) setting. Additive or not, the parameters 

and statistics of such terms could be quantified using the state-parameters and hyper-parameters 

methods discussed in the previous section (Ardeshiri et al., 2015; Dreano et al., 2017). One may 

also opt for an offline approach to quantify the statistics of the model errors or of their 

parameterizations based on the available data (Daley, 1992) or a set of assimilated increments 

(analysis minus model forecast), which became popular recently (van Leeuwen, 2015). One may 

further consider identifying missing physics in the model following a similar approach (van 

Leeuwen, 2015). 
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(iii) Coupled Data Assimilation: Building more accurate ocean models with better predictive skills 

can be achieved through parameters estimation and quantification of modeling errors, but also by 

implementing more complete dynamics. Ocean models are designed to be forced by prescribed 

atmospheric fields, a framework that does not allow to fully account for the ocean feedback to the 

atmosphere. This is also true for the atmospheric models, which require ocean surface fields on the 

ocean-atmosphere boundary layer. Following the continuous progress in computing resources and 

the desire to solve the most complete dynamics and extend the predictability of the atmospheric and 

oceanic forecasting systems, fully coupled ocean-atmosphere models have been under development 

for many years (e.g., Delworth et al., 1993; Stockdale et al., 1998). Another important benefit from 

models coupling is that it provides a dynamical framework to exploit the observations of the state 

of one system in the assimilation of the other model, e.g. use atmospheric observations to update 

the ocean model state, and vice-versa. This is referred to as the coupled ocean-atmosphere data 

assimilation (CDA) problem. 

CDA allows to exchange information between the models through the coupling dynamics and 

the assimilated observations. This should further provide state estimates that are more consistent 

with the dynamics of both systems. Nowadays, most operational centers agree that CDA is the goal 

for analysis and prediction of the climate system, particularly on subseasonal-to-seasonal and longer 

timescales (Penny and Hamill, 2017). The most straightforward CDA method would be to follow 

an augmented state approach in which the states and observations of the coupled models are 

concatenated into one state vector and one observation vector, basically considering the coupled 

system as a single state-space model. One could then directly apply any of the DA methods 

presented in this chapter for simultaneous assimilation of all available observations. 

Because of the complexity of coding and maintaining the adjoint of a coupled ocean-atmosphere 

system, the non-intrusive and portable nature of the EnKF algorithms have made them more popular 

for CDA (Tardif et al., 2015; Sluka et al., 2016). These methods may also offer more flexibility in 

implementation, such as using different filters and ensemble sizes for each model (Luo and Hoteit, 

2014b). However, the multi-scale nature, in space and time, of the dynamics of the coupled system 

requires revisiting the calculations of the ensembles cross-correlations (Luo and Hoteit, 2014b; Lu 

et al., 2015) and accordingly adapting the necessary auxiliary techniques, such as the ensemble 

localization and inflation (Frolov et al., 2016). Another important complexity in CDA is related to 

the turbulent dynamics of the atmospheric component together with the longer than synoptic 

timescales that make coupled problems interesting, but difficult to handle with a linear ensemble 

assimilation technique. Nonlinear/non-Gaussian assimilation methods may thus prove to be useful 

for such systems. However, the algorithmic and computational complexity of the coupled system, 

involving two or more different general circulation models, remains an important factor in limiting 

the development of CDA systems. To simplify the CDA problem, the notion of “weak” CDA has 

been introduced (e.g. Lu et al., 2015), in which each model of the coupled system assimilates its 

own observations. The coupling is achieved only via the forecast step, as opposed to performing 

coupled analysis steps, which is referred to as “strong” CDA. Weak CDA relies solely on the 

coupling dynamics to spread the observations information between the models and, thus, may miss 
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opportunities to exploit some useful information from the observations of the other models during 

assimilation. Nevertheless, the development of CDA systems is underway and the characteristics of 

cross-covariances between the errors in the atmosphere and ocean model forecasts are being 

explored (Smith et al., 2017a), demonstrating the additional potential of the “strong” CDA. 

Despite these challenges, the promises of delivering more skillful assimilative and predictive 

models, and particularly long-term (e.g., subseasonal-to-seasonal and longer) forecasts, will make 

CDA an active area of research in the years to come. Ocean models are also often coupled with 

many other components of the earth system, such as wave models to better describe wave-ocean 

interactions and properly resolve the surface roughness that is important for the atmosphere, various 

transport models for tracking, and biogeochemical models to simulate the ocean ecosystem 

variability. This presents endless possibilities for developing multi-assimilative models that 

combine different models, observations, and assimilation methods. 

Acknowledgements 

Xiaodong Luo was partly supported by the project “Advancing permafrost carbon climate feedback- 
improvements and evaluations of the Norwegian Earth System Model with observations” funded 
by the Research Council of Norway (ID 250740), and the project (ID 230303) funded by the 
Research Council of Norway and the industry partners – ConocoPhillips Skandinavia AS, Aker BP 
ASA, Eni Norge AS, Maersk Oil Norway AS, DONG Energy A/S, Denmark, Statoil Petroleum AS, 
ENGIE E&P NORGE AS, Lundin Norway AS, Halliburton AS, Schlumberger Norge AS, 
Wintershall Norge AS – through The National IOR Centre of Norway. CEREA is a member of 
Institute Pierre-Simon Laplace (IPSL). The authors would like to thank Naila Raboudi for her help 
and comments. 

References 

Aanonsen, S., G. Nævdal, D. Oliver, A. Reynolds, and B. Valls, 2009: The ensemble Kalman filter in reservoir 
engineering: a review. SPE Journal, 14, 393–412, SPE-117274-PA. 

Abarbanel, H., 2012: Analysis of observed chaotic data. Springer Science & Business Media. 
Ait-El-Fquih, B., M. E. Gharamti, and I. Hoteitl, 2016: A Bayesian consistent dual ensemble Kalman filter for 

state-parameter estimation in subsurface hydrology. Hydrology and Earth System Sciences, 20, 3289–
3307.  

Ait-El-Fquih, B., and I. Hoteit, 2016: A variational Bayesian multiple particle filtering scheme for large- 
dimensional systems. IEEE Transactions on Signal Processing, 64 (20), 5409–22. 

Ait-El-Fquih, B., and I. Hoteit, 2018: An efficient state-parameter filtering scheme combining ensemble 
Kalman and particle filters. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-16-0485.1. 

Aksoy, A., F. Zhang, and J. Nielsen-Gammon, 2006: Ensemble-based simultaneous state and parameter 
estimation with MM5. Geophysical Research Letters, 33, L12 801. 

Alspach, D., and H. Sorenson, 1972: Nonlinear Bayesian estimation using Gaussian sum approximations. IEEE 
transactions on automatic control, 17 (4), 439–448. 

Altaf, M. U., M. E. Gharamti, A. W. Heemink, and I. Hoteit, 2013a: A reduced adjoint approach to variational 
data assimilation. Computer Methods in Applied Mechanics and Engineering, 254, 1–13. 

Altaf, U., T. Buttler, T. Mayo, C. Dawson, A. Heemink, and I. Hoteit, 2014: A comparison of ensemble Kalman 
filters for short range storm surge assimilation. Mon. Wea. Rev., 142, 2899–2914. 

Altaf, U. M., T. Butler, X. Luo, C. Dawson, T. Mayo, and H. Hoteit, 2013b: Improving short range ensemble 
Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 2705–2720. 

Anderson, B. D. O., and J. B. Moore, 1979: Optimal filtering. Englewood Cliffs, 21, 22–95. 
Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 

2884–2903. 



5 02    I B R A H IM  H O T E I T  E T  A L .  
 
 
Anderson, J. L., 2003: A local least squares framework for ensemble filtering. Mon. Wea. Rev., 131 (4), 634–

642. 
Anderson, J. L., 2007a: An adaptive covariance inflation error correction algorithm for ensemble filters. Tellus, 

59A (2), 210–224. 
Anderson, J. L., 2007b: Exploring the need for localization in ensemble data assimilation using a hierarchical 

ensemble filter. Physica D: Nonlinear Phenomena, 230 (1), 99–111. 
Anderson, J. L., 2009: Spatially and temporally varying adaptive covariance inflation for ensemble filters. 

Tellus, 61A, 72–83. 
Anderson, J. L., 2010: A non-Gaussian ensemble filter update for data assimilation. Mon. Wea. Rev., 138, 

4186–4198. 
Anderson, J. L., 2012: Localization and sampling error correction in ensemble Kalman filter data assimilation. 

Mon. Wea. Rev., 140 (7), 2359–2371.  
Anderson, J. L., 2016: Reducing correlation sampling error in ensemble Kalman filter data assimilation. Mon. 

Wea. Rev., 144 (3), 913–925. 
Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem 

to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741–2758. 
Arbogast, E., G. Desroziers, and L. Berre, 2017: A parallel implementation of a 4DEnVar ensemble. Q. J. R. 

Meteor. Soc., doi:10.1002/qj.3061. 
Ardeshiri, T., E. Özkan, U. Orguner, and F. Gustafsson, 2015: Approximate Bayesian smoothing with 

unknown process and measurement noise covariances. IEEE Signal Processing Letters, 22 (12), 2450– 
2454. 

Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp, 2002: A tutorial on particle filters for online 
nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal Processing, 50, 174–188. 

Asch, M., M. Bocquet, and M. Nodet, 2016: Data assimilation: Methods, algorithms, and applications. SIAM. 
Aster, R. C., B. Borchers, and C. H. Thurber, 2005: Parameter Estimation and Inverse Problems. Elsevier, New 

York, 301 pp. 
Auligné, T., B. Ménétrier, A. C. Lorenc, and M. Buehner, 2016: Ensemble–variational integrated localized 

data assimilation. Mon. Wea. Rev., 144 (10), 3677–3696. 
Bai, Y., Z. Zhang, Y. Zhang, and L. Wang, 2016: Inflating transform matrices to mitigate assimilation errors 

with robust filtering based ensemble Kalman filters. Atmospheric Science Letters, 17, 470–478. 
Balmaseda, M. A., K. Mogensen, and A. T. Weaver, 2013: Evaluation of the ECMWF ocean reanalysis system 

ORAS4. Q. J. R. Meteor. Soc., 139 (674), 1132–1161. 
Bannister, R. N., 2017: A review of operational methods of variational and ensemble-variational data 

assimilation. Q. J. R. Meteor. Soc., 143 (703), 607–633. 
Barth, A., A. Alvera-Azcárate, J.-M. Beckers, M. Rixen, and L. Vandenbulcke, 2007: Multigrid state vector 

for data assimilation in a two-way nested model of the ligurian sea. J. Mar. Sys., 65 (1), 41–59. 
Bell, B. M., 1994: The iterated Kalman smoother as a Gauss–Newton method. SIAM Journal on Optimization, 

4 (3), 626–636. 
Bengtsson, T., C. Snyder, and D. Nychka, 2003: Toward a nonlinear ensemble filter for high-dimensional 

systems. Journal of Geophysical Research: Atmospheres, 108 (D24). 
Bennett, A. F., 2005: Inverse modeling of the ocean and atmosphere. Cambridge University Press. 
Berre, L., H. Varella, and G. Desroziers, 2015: Modelling of flow-dependent ensemble-based background- 

error correlations using a wavelet formulation in 4DVar at Météo-France. Q. J. R. Meteor. Soc., 141 (692), 
2803–2812. 

Bishop, C. H., B. J. Etherton, and S. J. Majumdar, 2001: Adaptive sampling with ensemble transform Kalman 
filter. Part I: Theoretical aspects. Mon. Wea. Rev., 129, 420–436. 

Bishop, C. H., and D. Hodyss, 2007: Flow-adaptive moderation of spurious ensemble correlations and its use 
in ensemble-based data assimilation. Q. J. R. Meteor. Soc., 133, 2029–2044. 

Blayo, E., M. Bocquet, E. Cosme, and L. F. Cugliandolo, 2014: Advanced data assimilation for geosciences. 
Oxford University Press, lecture Notes of the Les Houches School of Physics: Special Issue, 608 pp. 

Blockley, E. W., M. J. Martin, A. J. McLaren, A. G. Ryan, J. Waters, D. J. Lea, I. Mirouze, K. A. Peterson, A. 
Sellar, and D. Storkey, 2014. Recent development of the Met Office operational ocean forecasting system: 
an overview and assessment of the new Global FOAM forecasts. Geosci. Model. Dev., 7, 2613–2638. 

Bocquet, M., 2011: Ensemble Kalman filtering without the intrinsic need for inflation. Nonlin. Proc. Geophys., 
18, 735–750. 

Bocquet, M., 2016: Localization and the iterative ensemble Kalman smoother. Q. J. R. Meteor. Soc., 142, 
1075–1089. 

Bocquet, M., C. Pires, and L. Wu, 2010: Beyond Gaussian statistical modeling in geophysical data 
assimilation. Mon. Wea. Rev., 138 (8), 2997–3023. 



D A T A  A S S I M I L A T I O N  I N  O C E A N O G R AP H Y :   
C U R R E N T  S TA T U S  A N D  N E W  D I R E C T I O N S    50 3  

 
Bocquet, M., P. N. Raanes, and A. Hannart, 2015: Expanding the validity of the ensemble Kalman filter 

without the intrinsic need for inflation. Nonlin. Processes Geophys., 22, 645. 
Bocquet, M., and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly 

nonlinear systems. Nonlin. Processes Geophys., 19 (3), 383–399. 
Bocquet, M., and P. Sakov, 2013: Joint state and parameter estimation with an iterative ensemble Kalman 

smoother. Nonlin. Processes Geophys., 20 (5), 803–818. 
Bocquet, M., and P. Sakov, 2014: An iterative ensemble Kalman smoother. Q. J. R. Meteor. Soc., 140 (682), 

1521–1535. 
Bonavita, M., L. Isaksen, and E. Hólm, 2012: On the use of EDA background error variances in the ECMWF 

4DVar. Q. J. R. Meteor. Soc., 138 (667), 1540–1559. 
Bonavita, M., L. Raynaud, and L. Isaksen, 2011: Estimating background-error variances with the ECMWF 

ensemble of data assimilations system: Some effects of ensemble size and day-to-day variability. Q. J. R. 
Meteor. Soc., 137 (655), 423–434. 

Bouttier, F., and P. Courtier, 1999: Date assimilation concepts and methods. meteorological training lecture 
notes, ECMWF, shinfield park. Reading. 

Bowler, N. E., J. Flowerdew, and S. R. Pring, 2013: Tests of different flavors of EnKF on a simple model. Q. 
J. R. Meteor. Soc., 139, 1505–1519. 

Bowler, N. E., and Coauthors, 2017: Inflation and localization tests in the development of an ensemble of 4D-
ensemble variational assimilations. Q. J. R. Meteor. Soc., 143 (704), 1280–1302. 

Buehner, M., 2005: Ensemble-derived stationary and flow-dependent background-error covariances: 
Evaluation in a quasi-operational NWP setting. Q. J. R. Meteor. Soc., 131 (607), 1013–1043. 

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010a: Intercomparison of variational 
data assimilation and the ensemble Kalman filter for global deterministic NWP. Part-I: Description and 
single-observation experiments. Mon. Wea. Rev., 138 (5), 1550–1566. 

Buehner, M., P. L. Houtekamer, C. Charette, H. L. Mitchell, and B. He, 2010b: Intercomparison of variational 
data assimilation and the ensemble Kalman filter for global deterministic NWP. Part II: One-month 
experiments with real observations. Mon. Wea. Rev., 138 (5), 1567–1586. 

Buehner, M., J. Morneau, and C. Charette, 2013: Four-dimensional ensemble-variational data assimilation for 
global deterministic weather prediction. Nonlin. Processes Geophys., 20 (5), 669–682. 

Buehner, M., and Coauthors, 2015: Implementation of deterministic weather forecasting systems based on 
ensemble–variational data assimilation at environment Canada. Part I: The global system. Mon. Wea. Rev., 
143 (7), 2532–2559. 

Buizza, R., M. Milleer, and T. N. Palmer, 1999: Stochastic representation of model uncertainties in the 
ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc., 125 (560), 2887–2908. 

Burgers, G., P. J. van Leeuwen, and G. Evensen, 1998: On the analysis scheme in the ensemble Kalman filter. 
Mon. Wea. Rev., 126, 1719–1724. 

Cane, M. A., A. Kaplan, R. N. Miller, B. Tang, E. C. Hackert, and A. J. Busalacchi, 1996: Mapping tropical 
pacific sea level: Data assimilation via a reduced state space Kalman filter. Journal of Geophysical 
Research: Oceans, 101 (C10), 22 599–22 617.  

Cappé, O., E. Moulines, and T. Rydén, 2005: Inference in Hidden Markov Models. Springer-Verlag. 
Chassignet, E. P., H. E. Hurlburt, O. M. Smedstad, G. R. Halliwell, A. J. Hogan, P. J. Wallcraft, R. Baraille, 

and R. Bleck, 2007: The HYCOM (Hybrid Coordinate Ocean Model) data assimilative system. J. Mar. 
Sys., 65 (1), 60–83. 

Chen, R., and J. Liu, 2000: Mixture Kalman filters. Journal of the Royal Statistical Society: Series B (Statistical 
Methodology), 62 (3), 493–508. 

Chen, Y., and D. Oliver, 2013: Levenberg-Marquardt forms of the iterative ensemble smoother for efficient 
history matching and uncertainty quantification. Computational Geosciences, 17, 689–703. 

Chen, Y., and D. Zhang, 2006: Data assimilation for transient flow in geologic formations via ensemble 
Kalman filter. Advances in Water Resources, 29, 1107–1122. 

Chepurin, G. A., J. A. Carton, and D. P. Dee, 2005: Forecast model bias correction in ocean data assimilation. 
Mon. Wea. Rev., 133, 1328–1342. 

Chorin, A., M. Morzfeld, and X. Tu, 2010: Implicit particle filters for data assimilation. Commun. Appl. Math. 
Comput. Sci., 5, 221–240. 

Clayton, A. M., A. C. Lorenc, and D. M. Barker, 2013: Operational implementation of a hybrid ensemble 
4DVar global data assimilation system at the met office. Q. J. R. Meteor. Soc., 139 (675), 1445–1461. 

Cohn, S., and R. Todling, 1996: Approximate data assimilation schemes for stable and unstable dynamics. J. 
Meteor. Soc. Japan, 74, 63–75. 

Cosme, E., J.-M. Brankart, J. Verron, P. Brasseur, and M. Krysta, 2010: Implementation of a reduced rank 
square-root smoother for high resolution ocean data assimilation. Ocean Modelling, 33 (1), 87–100. 



5 04    I B R A H IM  H O T E I T  E T  A L .  
 
 
Cosme, E., J. Verron, P. Brasseur, J. Blum, and D. Auroux, 2012: Smoothing problems in a Bayesian 

framework and their linear Gaussian solutions. Mon. Wea. Rev., 140 (2), 683–695. 
Counillon, F., and L. Bertino, 2009: Ensemble optimal interpolation: multivariate properties in the Gulf of 

Mexico. Tellus, 61A, 296 – 308. 
Courtier, P., 1997: Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteor. Soc., 123 

(544), 2449–2461. 
Courtier, P., J.-N. The´paut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4DVar 

using an incremental approach. Q. J. R. Meteor. Soc., 120, 1367–1387. 
Cummings, J.A., O.M. Smedstad. 2013. Variational data assimilation for the global ocean. In: Park S., Xu L. 

(eds) Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications (Vol II). Springer, Berlin, 
Heidelberg. 

Daley, R., 1991: Atmospheric data analysis. Cambridge Atmospheric and Space Science Series, Cambridge 
University Press, 6966, 25. 

Daley, R., 1992: Estimating model-error covariances for application to atmospheric data assimilation. Mon. 
Wea. Rev., 120, 1735–1746. 

Danforth, C. M., and E. Kalnay, 2008: Using singular value decomposition to parameterize state-dependent 
model errors. J. Atmos. Sci., 65, 1467–1478. 

De La Chevrotie`re, M., and J. Harlim, 2017: A data-driven method for improving the correlation estimation 
in serial ensemble Kalman filters. Mon. Wea. Rev., 145, 985–1001. 

Dee, D. P., 1995: Online estimation of error covariance parameters for atmospheric data assimilation. Mon. 
Wea. Rev., 123, 1128–1145. 

Dee, D. P., and A. M. da Silva, 1998: Data assimilation in the presence of forecast bias. Q. J. R. Meteorol. 
Soc., 124, 269–295. 

Delworth, T., S. Manabe, and R. J. Stouffer, 1993: Interdecadal variations of the thermohaline circulation in a 
coupled ocean-atmosphere model. Journal of Climate, 6, 1993–2011. 

Desroziers, G., E. Arbogast, and L. Berre, 2016: Improving spatial localization in 4DEnVar. Q. J. R. Meteor. 
Soc., 142 (701), 3171–3185. 

Desroziers, G., J.-T. Camino, and L. Berre, 2014: 4DEnVar: Link with 4D state formulation of variational 
assimilation and different possible implementations. Q. J. R. Meteor. Soc., 140 (684), 2097–2110. 

Di Lorenzo, E., A. M. Moore, H. G. Arango, B. D. Cornuelle, A. J. Miller, B. Powell, B. S. Chua, and A. F. 
Bennett, 2007: Weak and strong constraint data assimilation in the inverse regional ocean modeling system 
(ROMS): Development and application for a baroclinic coastal upwelling system. Ocean Modelling, 16, 
160–187. 

Doucet, A., N. De Freitas, and N. Gordon, Eds., 2001: Sequential Monte Carlo methods in practice. Springer 
Verlag. 

Doucet, A., N. De Freitas, K. P. Murphy, and S. J. Russell, 2000a: Rao-blackwellised particle filtering for 
dynamic Bayesian networks. Proceedings of the 16th world Conference on UAI, Stanford, California, 
USA, 176–83. 

Doucet, A., S. Godsill, and C. Andrieu, 2000b: On sequential Monte Carlo sampling methods for Bayesian 
filtering. Statistics and Computing, 10 (3), 197–208. 

Doucet, A., and A. M. Johansen, 2011: A tutorial on particle filtering and smoothing: fifteen years later. Oxford 
Handbook of Nonlinear Filtering. 

Dreano, D., B. Mallick, and I. Hoteit, 2015: Filtering remotely sensed chlorophyll concentrations in the Red 
Sea using a space–time covariance model and a Kalman filter. Spatial Statistics, 13, 1–20.  

Dreano, D., P. Tandeo, M. Pulido, B. Ait-El-Fquih, T. Chonavel, and I. Hoteit, 2017: Estimating model-error 
covariances in nonlinear state-space models using Kalman smoothing and the expectation-maximization 
algorithm. Q. J. R. Meteorol. Soc., 143, 1877–1885. 

Duan, L., C. L. Farmer, and I. M. Moroz, 2010: Regularized particle filter with Langevin resampling step. AIP 
Conference Proceedings, 1281 (1), 1080–1083. 

El-Sheikh, A., I. Hoteit, and M. Wheeler, 2014: Nested sampling particle filter for nonlinear data assimilation. 
Q. J. R. Meteorol. Soc., 140, 1640–1653. 

Elbern, H., A. Strunk, H. Schmidt, and O. Talagrand, 2007: Emission rate and chemical state estimation by 
four-dimensional variational inversion. Atmos. Chem. Phys., 7, 3749–3769. 

Emerick, A. A., and A. C. Reynolds, 2012: Ensemble smoother with multiple data assimilation. Computers & 
Geosciences, 55, 3–15. 

Evensen, G., 1994: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo 
methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99 (C5), 10 143– 10 162. 

Evensen, G., 2003: The ensemble Kalman filter: Theoretical formulation and practical implementation. Ocean 
Dynamics, 53, 343–367. 



D A T A  A S S I M I L A T I O N  I N  O C E A N O G R AP H Y :   
C U R R E N T  S TA T U S  A N D  N E W  D I R E C T I O N S    50 5  

 
Evensen, G., 2009: The ensemble Kalman filter for combined state and parameter estimation. IEEE Control 

Syst., 29 (3), 83–104. 
Fairbairn, D., S. Pring, A. Lorenc, and I. Roulstone, 2014: A comparison of 4DVar with ensemble data 

assimilation methods. Q. J. R. Meteor. Soc., 140 (678), 281–294. 
Fang, F., C. C. Pain, I. M. Navon, M. D. Piggott, G. J. Gorman, P. E. Farrell, P. A. Allison, and A. J. H. 

Goddard, 2009: A POD reduced-order 4DVar adaptive mesh ocean modelling approach. International 
Journal for Numerical Methods in Fluids, 60, 709–732. 

Farrell, B. F., and P. J. Ioannou, 2001: State estimation using a reduced-order Kalman filter. Journal of the 
Atmospheric Sciences, 58 (23), 3666–3680. 

Fertig, E. J., B. R. Hunt, E. Ott, and I. Szunyogh, 2007: Assimilating non-local observations with a local 
ensemble Kalman filter. Tellus A, 59, 719–730. 

Frei, M., and H. Ku¨nsch, 2012: Sequential state and observation noise covariance estimation using combined 
ensemble Kalman and particle filters. Mon. Wea. Rev., 140, 1476–95. 

Frei, M., and H. R. Ku¨nsch, 2013: Bridging the ensemble Kalman and particle filters. Biometrika, 100, 781–
800. 

Frolov, S., C. H. Bishop, T. Holt, J. Cummings, and D. Kuhl, 2016: Facilitating strongly coupled ocean-
atmosphere data assimilation with an interface solver. Mon. Wea. Rev., 144, 3–20. 

Fukumori, I., and P. Malanotte-Rizzoli, 1995: An approximate kaiman filter for ocean data assimilation: An 
example with an idealized gulf stream model. J. Geophys. Res.: Oceans, 100 (C4), 6777–6793. 

Gaspari, G., and S. E. Cohn, 1999: Construction of correlation functions in two and three dimensions. Q. J. R. 
Meteor. Soc., 125, 723–757. 

Gharamti, M., J. Valstar, and I. Hoteit, 2014a: An adaptive hybrid EnKF -OI scheme for efficient state- 
parameter estimation of reactive contaminant transport models. Advances in Water Resources, 71, 1–15. 

Gharamti, M. E., 2018: Enhanced adaptive inflation algorithm for ensemble filters. Mon. Wea. Rev., 146, 623–
640.  

Gharamti, M. E., B. Ait-El-Fquih, and I. Hoteit, 2015a: An iterative ensemble Kalman filter with one-step- 
ahead smoothing for state-parameters estimation of contaminant transport models. Journal of Hydrology, 
527, 442–457. 

Gharamti, M. E., B. Ait-El-Fquih, and I. Hoteit, 2015b: An iterative ensemble Kalman filter with one-step- 
ahead smoothing for state-parameters estimation of contaminant transport models. Journal of Hydrology, 
527, 442–457. 

Gharamti, M. E., A. Kadoura, S. Sun, J. Valstar, and I. Hoteit, 2014b: Constraining a compositional flow model 
with flow-chemical data using an ensemble Kalman filter. Water Resources Research, 50, 2444–2467. 

Ghil, M., and P. Malanotte-Rizzoli, 1991: Data assimilation in meteorology and oceanography. Advances in 
Geophysics, 33, 141–266. 

Giering, R., and T. Kaminski, 1998: Recipes for adjoint code construction. ACM Transactions on 
Mathematical Software (TOMS), 24 (4), 437–474. 

Gordon, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel approach to nonlinear and non-Gaussian 
Bayesian state estimation. IEE Proceedings F in Radar and Signal Processing, 140, 107–113. 

Gu, Y., and D. Oliver, 2007: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. 
SPE Journal, 12, 438–446. 

Gustafsson, N., J. Bojarova, and O. Vignes, 2014: A hybrid variational ensemble data assimilation for the high 
resolution limited area model (HIRLAM). Nonlin. Processes Geophys., 21 (1), 303–323.  

Haley, P. J., and Coauthors, 2009: Forecasting and reanalysis in the Monterey Bay/California current region 
for the autonomous ocean sampling network-ii experiment. Deep Sea Research Part II: Topical Studies in 
Oceanography, 56 (3), 127–148. 

Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter-3D variational analysis scheme. Mon. 
Wea. Rev., 128 (8), 2905–2919. 

Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data 
assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 3132–3147. 

Hamill, T. M., J. S. Whitaker, J. L. Anderson, and C. Snyder, 2009: Comments on “Sigma-point Kalman filter 
data assimilation methods for strongly nonlinear systems”. J. Atmos. Sci., 66, 3498–3500. 

Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error 
covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776–2790. 

Hamilton, F., T. Berry, and T. Sauer, 2016: Ensemble Kalman filtering without a model. Physical Review X, 
6 (1), 011 021. 

Hamilton, J. D., 1986: State-space models. R.F. Engle & D. McFadden, H. of Economics, Ed., Vol. 4, 1st ed., 
Elsevier, chap. 50, 3039–80. 



5 06    I B R A H IM  H O T E I T  E T  A L .  
 
 
Harvey, A. C., and G. D. A. Phillips, 1979: Maximum likelihood estimation of regression models with 

autoregressive-moving average disturbance. Biometrika, 66, 49–58. 
Heimbach, P., C. Hill, and R. Giering, 2002: Automatic generation of efficient adjoint code for a parallel 

Navier-Stokes solver. Computational Science ICCS 2002, 1019–1028. 
Hoteit, I., D.-T. Pham, M. E. Gharamti, and X. Luo, 2015: Mitigating observation perturbation sampling errors 

in the stochastic EnKF. Mon. Wea. Rev., 143 (7). 
Hoteit, I., X. Luo, and D. T. Pham, 2012: Particle Kalman filtering: A nonlinear Bayesian framework for 

ensemble Kalman filters. Mon. Wea. Rev., 140, 528–542. 
Hoteit, I., B. Cornuelle, and P. Heimbach, 2010: An eddy permitting variational data assimilation system for 

estimating the of the tropical pacific. J. Geophys. Res., 115, C03001, doi:10.1029/2009JC005 347. 
Hoteit, I., 2008: A reduced-order simulated annealing approach for four-dimensional variational data 

assimilation in meteorology and oceanography. Int. J. Numer. Meth. Fluids, 58 (11), 1181–1199. 
Hoteit, I., D. T. Pham, G. Triantafyllou, and G. Korres, 2008: A new approximate solution of the optimal 

nonlinear filter for data assimilation in meteorology and oceanography. Mon. Wea. Rev., 136, 317–334. 
Hoteit, I., G. Triantafyllou, and G. Korres, 2007: Using low-rank ensemble Kalman filters for data assimilation 

with high dimensional imperfect models. J. Num. Ana. Ind. Appl. Math., 2 (1-2), 67–78. 
Hoteit, I., and A. Köhl, 2006: Efficiency of reduced-order, time-dependent adjoint data assimilation 

approaches. Journal of Oceanography, 62 (4), 539–550. 
Hoteit, I., B. Cornuelle, A. Köhl, and D. Stammer, 2005a: Treating strong adjoint sensitivities in tropical eddy-

permitting variational data assimilation. Q. J. R. Meteorol. Soc., 131, 3659–3682. 
Hoteit, I., G. Korres, and G. Triantafyllou, 2005b: Comparison of extended and ensemble based Kalman filters 

with low and high-resolution primitive equations ocean models. Nonlin. Processes Geophys., 12, 755–765. 
Hoteit, I., and D.-T. Pham, 2004: An adaptively reduced-order extended Kalman filter for data assimilation in 

the tropical pacific. J. Mar. Sys., 45 (3), 173–188. 
Hoteit, I., and D. T. Pham, 2003: Evolution of the reduced state space and data assimilation schemes based on 

the Kalman filter. Journal of the Meteorological Society of Japan, 81, 21–39. 
Hoteit, I., D. T. Pham, and J. Blum, 2002: A simplified reduced order Kalman filtering and application to 

altimetric data assimilation in tropical pacific. J. Mar. Sys., 36, 101–127. 
Hoteit, I., D. T. Pham, and J. Blum, 2001: A semi-evolutive partially local filer for data assimilation. Marine 

Pollution Bulletin, 43, 164–174. 
Houtekamer, P., and F. Zhang, 2016: Review of the ensemble Kalman filter for atmospheric data assimilation. 

Mon. Wea. Rev., 144, 4489–4532. 
Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. 

Mon. Wea. Rev., 126, 796–811. 
Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble filter for atmospheric data assimilation. 

Mon. Wea. Rev., 129, 123–137. 
Houtekamer, P. L., and H. L. Mitchell, 2005: Ensemble Kalman filtering. Q. J. R. Meteor. Soc., 131, 3269– 

3289. 
Houtekamer, P. L., H. L. Mitchell, G. Pellerin, M. Buehner, M. Charron, L. Spacek, and B. Hansen, 2005: 

Atmospheric data assimilation with an ensemble Kalman filter: Results with real observations. Mon. Wea. 
Rev., 133 (3), 604–620. 

Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A 
local ensemble transform Kalman filter. Physica D, 230 (1), 112–126. 

Hunt, B. R., and Coauthors, 2004: Four-dimensional ensemble Kalman filtering. Tellus A, 56 (4), 273–277.  
Ito, K., and K. Xiong, 2000: Gaussian filters for nonlinear filtering problems. IEEE Transactions on Automatic 

Control, 45, 910–927. 
Janekovic, I., B. Powell, D. Matthews, M. McManus, and J. Sevadjian, 2013: 4DVar data assimilation in a 

nested, coastal ocean model: A hawaiian case study. Journal of Geophysical Research: Oceans, 118 (10), 
5022–5035. 

Jazwinski, A. H., 1970: Stochastic Processes and Filtering Theory. Academic Press. 
Julier, S., J. Uhlmann, and H. Durrant-Whyte, 2000: A new method for the nonlinear transformation of means 

and covariances in filters and estimators. IEEE Transactions on Automatic Control, 45, 477–482. 
Julier, S., and J. K. Uhlmann, 2004: Unscented filtering and nonlinear estimation. Proc. IEEE, 92, 401–422. 
Kalman, R., 1960: A new approach to linear filtering and prediction problems. J. Basic Eng., 82 (1), 35–45. 
Kalnay, E., H. Li, T. Miyoshi, S.-C. Yang, and J. Ballabera-Poy, 2007: 4DVar or ensemble Kalman filter? 

Tellus A, 59 (5), 758–773. 
Kim, S.-B., I. Fukumori, and T. Lee, 2006: The closure of the ocean mixed layer temperature budget using 

level-coordinate model fields. Journal of Atmospheric and Oceanic Technology, 23 (6), 840–853. 



D A T A  A S S I M I L A T I O N  I N  O C E A N O G R AP H Y :   
C U R R E N T  S TA T U S  A N D  N E W  D I R E C T I O N S    50 7  

 
Kleist, D. T., and K. Ide, 2015: An OSSE-based evaluation of hybrid variational–ensemble data assimilation 

for the ncep gfs. Part I: System description and 3D-hybrid results. Mon. Wea. Rev., 143 (2), 433–451. 
Köhl, A., and D. Stammer, 2008: Variability of the meridional overturning in the North Atlantic from the 50 

years GECCO state estimation. J. Phys. Oceanogr., 38, 1913–1930. 
Köhl, A., and J. Willebrand, 2002: An adjoint method for the assimilation of statistical characteristics into 

eddy-resolving ocean models. Tellus, 54, 406–425. 
Korres, G., K. Nitti, L. Perivoliotis, K. Tsiaras, A. Papadopoulos, G. Triantafyllou, I. Hoteit, and K. Abdullah, 

2010: Forecasting the Aegean Sea hydrodynamics within the Poseidon-ii operational system. Journal of 
Operational Oceanography, 3 (1), 37–49. 

Law, K., A. Stuart, and K. Zygalakis, 2015: Data assimilation: a mathematical introduction, Vol. 62. Springer. 
Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based 

data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132 (8), 1966–1981. 
Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for analysis and assimilation of 

meteorological observations: theoretical aspects. Tellus A, 38A (2), 97–110. 
Lea, D., M. Allen, and T. Haine, 2000: Sensitivity analysis of the climate of a chaotic system. Tellus A, 52, 

523–532. 
Lee, Y., A. J. Majda, and D. Qi, 2017: Preventing catastrophic filter divergence using adaptive additive 

inflation for baroclinic turbulence. Mon. Wea. Rev., 145, 669–682. 
Lei, J., P. Bickel, and C. Snyder, 2010: Comparison of ensemble Kalman filters under non-Gaussianity. Mon. 

Wea. Rev., 138, 1293–1306. 
Lellouche J.-M., O. Le Galloudec, M. Drévillon, C. Régnier, E. Greiner, G. Garric, N. Ferry, C. Desportes, C.-

E. Testut, C. Bricaud, R. Bourdallé-Badie, B. Tranchant, M. Benkiran, Y. Drillet, A. Daudin, and C. De 
Nicola, 2013. Evaluation of global monitoring and forecasting systems at Mercator Océan. Ocean Science, 
9, 57–81, 

Lermusiaux, P., and A. Robinson, 1999: Data assimilation via error subspace statistical estimation. Part I: 
Theory and schemes. Mon. Wea. Rev., 127, 1385–1407. 

Lguensat, R., P. Tandeo, P. Ailliot, M. Pulido, and R. Fablet, 2017: The analog data assimilation. Mon. Wea. 
Rev., 145 (10), 4093–4107. 

Li, G., M. Iskandarani, M. Le Henaff, J. Winokur, O. Le Maitre, and O. Knio, 2015: Quantifying initial and 
wind forcing uncertainties in the Gulf of Mexico. Comput. Geosci., 20, 1133–1153. 

Li, H., E. Kalnay, and T. Miyoshi, 2009a: Simultaneous estimation of covariance inflation and observation 
errors within an ensemble Kalman filter. Q. J. R. Meteor. Soc., 135, 523–533. 

Li, H., E. Kalnay, T. Miyoshi, and C. M. Danforth, 2009b: Accounting for model errors in ensemble data 
assimilation. Mon. Wea. Rev., 137, 3407–3419. 

Liu, B., B. Ait-El-Fquih, and I. Hoteit, 2016: Efficient kernel-based ensemble Gaussian mixture filtering. Mon. 
Wea. Rev., 144 (2), 781–800. 

Liu, C., A. Köhl, and D. Stammer, 2012: Adjoint-based estimation of eddy-induced tracer mixing parameters 
in the global ocean. Journal of Physical Oceanography, 42 (7), 1186–1206. 

Liu, C., Q. Xiao, and B. Wang, 2008: An ensemble-based four-dimensional variational data assimilation 
scheme. Part I: Technical formulation and preliminary test. Mon. Wea. Rev., 136 (9), 3363–3373. 

Liu, C., Q. Xiao, and B. Wang, 2009: An ensemble-based four-dimensional variational data assimilation 
scheme. Part II: Observing system simulation experiments with advanced research WRF (ARW). Mon. 
Wea. Rev., 137 (5), 1687–1704. 

Liu, L., H. Ji, and Z. Fan, 2015: Improved iterated-corrector-PHD with Gaussian mixture implementation. 
Signal Processing, 114, 89–99.  

Lorenc, A. C., 2003: The potential of the ensemble Kalman filter for NWP a comparison with 4DVar. Q. J. R. 
Meteor. Soc., 129 (595), 3183–3203. 

Lorenc, A. C., N. E. Bowler, A. M. Clayton, S. R. Pring, and D. Fairbairn, 2015: Comparison of hybrid- 
4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Wea. Rev., 143 (1), 212– 
229. 

Lorentzen, R., and G. Nævdal, 2011: An iterative ensemble Kalman filter. IEEE Transactions on Automatic 
Control, 56, 1990 –1995. 

Lu, F., Z. Liu, S. Zhang, and Y. Liu, 2015: Strongly coupled data assimilation using leading averaged coupled 
covariance (lacc). Part I: Simple model study. Mon. Wea. Rev., 143, 3823–3837. 

Luo, A., L. M. Moroz, and I. Hoteit, 2010: Scaled unscented transform Gaussian sum filter: Theory and 
application. Physica-D, 239, 684–701. 

Luo, X., T. Bhakta, and G. Nædal, 2018: Correlation-based adaptive localization with applications to 
ensemble-based 4D seismic history matching. SPE Journal, in press, SPE-185936-PA. 



5 08    I B R A H IM  H O T E I T  E T  A L .  
 
 
Luo, X., and I. Hoteit, 2011: Robust ensemble filtering and its relation to covariance inflation in the ensemble 

Kalman filter. Mon. Wea. Rev., 139, 3938–3953. 
Luo, X., and I. Hoteit, 2013: Covariance inflation in the ensemble Kalman filter: a residual nudging perspective 

and some implications. Mon. Wea. Rev., 141, 3360–3368. 
Luo, X., and I. Hoteit, 2014a: Efficient particle filtering through residual nudging. Q. J. R. Meteor. Soc., 140, 

557–572. 
Luo, X., and I. Hoteit, 2014b: Ensemble Kalman filtering with a divided state-space strategy for coupled data 

assimilation problems. Mon. Wea. Rev., 142, 4542–4558. 
Luo, X., and I. Hoteit, 2014c: Ensemble Kalman filtering with residual nudging: an extension to the state 

estimation problems with nonlinear observations. Mon. Wea. Rev., 142, 3696–3712. 
Luo, X., I. Hoteit, and I. M. Moroz, 2012: On a nonlinear Kalman filter with simplified divided difference 

approximation. Physica D, 241, 671–680. 
Luo, X., and I. M. Moroz, 2009: Ensemble Kalman filter with the unscented transform. Physica D, 238, 549–

562. 
Luo, X., A. Stordal, R. Lorentzen, and G. Nævdal, 2015: Iterative ensemble smoother as an approximate 

solution to a regularized minimum-average-cost problem: theory and applications. SPE Journal, 20, 962–
982. 

Malinverno, A., 2002: Parsimonious Bayesian Markov chain Monte Carlo inversion in a nonlinear geophysical 
problem. Geophysical Journal International, 151, 675–688. 

Mehra, R., 1970: On the identification of variances and adaptive Kalman filtering. IEEE Transactions on 
Automatic Control, 15, 175–184. 

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, 1953: Equation of state 
calculations by fast computing machines. J. Chem. Phys., 21, 1087–1092. 

Mitchell, H. L., and P. L. Houtekamer, 2000: An adaptive ensemble Kalman filter. Mon. Wea. Rev., 128, 416–
433. 

Miyoshi, T., 2011: The Gaussian approach to adaptive covariance inflation and its implementation with the 
local ensemble transform Kalman filter. Mon. Wea. Rev., 139, 1519–1535. 

Moore, A. M., and Coauthors, 2011: The regional ocean modeling system (roms) four-dimensional variational 
data assimilation systems: Part II–performance and application to the California Current system. Progress 
in Oceanography, 91 (1), 50–73. 

Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser, 2005: Dual state–parameter estimation of 
hydrological models using ensemble Kalman filter. Advances in Water Resources, 28 (2), 135–147. 

Nerger, L., W. Hiller, and J. Schröter, 2005: A comparison of error subspace Kalman filters. Tellus A, 57 (5), 
715–735. 

Nerger, L., T. Janjic, J. Schrter, and H. W., 2012: A unification of ensemble square root Kalman filters. Mon. 
Wea. Rev., 140 (7), 2335–2345. 

Nerger, L., S. Schulte, and A. Bunse-Gerstner, 2014: On the influence of model nonlinearity and localization 
on ensemble Kalman smoothing. Q. J. R. Meteor. Soc., 140 (684), 2249–2259. 

Ngodock, H., and M. Carrier, 2014: A 4D-Var system for the Navy coastal ocean model. Part II: Strong and 
weak constraint assimilation experiments with real observations in Monterey Bay. Mon. Wea. Rev., 142 
(6), 2108–2117. 

Oke, P. R., G. B. Brassington, and A. Griffin, and D. A. Schiller, 2008: The Bluelink ocean data assimilation 
system (bodas). Ocean Modelling, 21 (1), 46–70. 

Oke, P. R., P. Sakov, and S. P. Corney, 2007: Impacts of localisation in the EnKF and EnOI: experiments with 
a small model. Ocean Dynamics, 57 (1), 32–45.  

Oliver, D., and Y. Chen, 2011: Recent progress on reservoir history matching: A review. Computational 
Geosciences, 15, 185–221. 

Oliver, D. S., N. He, and A. C. Reynolds, 1996: Conditioning permeability fields to pressure data. ECMOR 
V-5th European Conference on the Mathematics of Oil Recovery. 

Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 
415–428. 

Pagan, A., 1980: Some identification and estimation results for regression models with stochastically varying 
coefficients. Journal of Econometrics, 13, 341–63. 

Penny, S. G., and T. M. Hamill, 2017: Coupled data assimilation for integrated earth system analysis and 
prediction. Bulletin of the American Meteorological Society, 97 (7), ES169–ES172. 

Penny, S. G., and T. Miyoshi, 2016: A local particle filter for high-dimensional geophysical systems. Nonlin. 
Processes Geophys, 23, 391–405. 

Pham, D. T., 2001: Stochastic methods for sequential data assimilation in strongly nonlinear systems. Mon. 
Wea. Rev., 129, 1194–1207. 



D A T A  A S S I M I L A T I O N  I N  O C E A N O G R AP H Y :   
C U R R E N T  S TA T U S  A N D  N E W  D I R E C T I O N S    50 9  

 
Pham, D. T., J. Verron, and C. Roubaud, 1997: Singular evolutive Kalman filter with EOF initialization for 

data assimilation in oceanography. J. Mar. Syst., 16, 323–340. 
Pires, C., R. Vautard, and O. Talagrand, 1996: On extending the limits of variational assimilation in nonlinear 

chaotic systems. Tellus, 48, 96–121. 
Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. Mon. Wea. Rev., 144, 

59–76. 
Poterjoy, J., and F. Zhang, 2015: Systematic comparison of four-dimensional data assimilation methods with 

and without the tangent linear model using hybrid background error covariance: E4DVar versus 4DEnVar. 
Mon. Wea. Rev., 143 (5), 1601–1621. 

Raanes, P. N., 2016: On the ensemble Rauch-Tung-Striebel smoother and its equivalence to the ensemble 
Kalman smoother. Q. J. R. Meteor. Soc., 142 (696), 1259–1264. 

Rasmussen, J., H. Madsen, K. H. Jensen, and J. C. Refsgaard, 2015a: Data assimilation in integrated 
hydrological modeling using ensemble Kalman filtering: evaluating the effect of ensemble size and 
localization on filter performance. Hydrology and Earth System Sciences, 19, 2999–3013. 

Rasmussen, J., H. Madsen, K. H. Jensen, and J. C. Refsgaard, 2015b: Data assimilation in integrated 
hydrological modeling using ensemble Kalman filtering: Evaluating the effect of ensemble size and 
localization on filter performance. Hydrology Earth System Science, 19, 2999–3013. 

Raynaud, L., L. Berre, and G. Desroziers, 2009: Objective filtering of ensemble-based background-error 
variances. Q. J. R. Meteor. Soc., 135 (642), 1177–1199. 

Reich, S., 2013: A nonparametric ensemble transform method for Bayesian inference. SIAM Journal on 
Scientific Computing, 35, A2013–A2024. 

Robert, C., 2007: The Bayesian choice: From decision-theoretic foundations to computational implementation. 
Springer Science & Business Media, New York. 

Robert, C., S. Durbiano, E. Blayo, J. Verron, J. Blum, and F.-X. Le Dimet, 2005: A reduced-order strategy for 
4DVar data assimilation. J. Mar. Sys., 57 (1), 70–82. 

Sakov, P., and L. Bertino, 2011: Relation between two common localisation methods for the EnKF. 
Computational Geosciences, 15 (2), 225–237. 

Sakov, P., and P. R. Oke, 2008: Implications of the form of the ensemble transformation in the ensemble square 
root filters. Mon. Wea. Rev., 136 (3), 1042–1053. 

Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon. Wea. 
Rev., 140 (6), 1988–2004. 

Sakov P., F. Counillon, L. Bertino, K.A. Lisæter, P. Oke, A. Korablev. 2012. TOPAZ4: an ocean-sea ice data 
assimilation system for the North Atlantic and Arctic. Ocean Science, 8, 633–656. 

Sakov, P., and P. A. Sandery, 2015: Comparison of EnOI and EnKF regional ocean reanalysis systems. Ocean 
Modelling, 89, 45–60. 

Särkkä, S., and J. Hartikainen, 2013: Non-linear noise adaptive Kalman filtering via variational Bayes. 
Proceedings of the IEEE 2013 International Workshop on Machine Learning for Signal Processing. 

Shen, Z., and Y. Tang, 2015: A modified ensemble Kalman particle filter for non-Gaussian systems with 
nonlinear measurement functions. Journal of Advances in Modeling Earth Systems, 7, 50–66. 

Shumway, R. H., and D. S. Stoffer, 1982: An approach to time series smoothing and forecasting using the EM 
algorithm. Journal of Time Series Analysis, 3 (4), 253–264. 

Simon, D., 2006: Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches. Wiley- 
Interscience, 552 pp. 

Sluka, T. C., S. G. Penny, E. Kalnay, and T. Miyoshi, 2016: Assimilating atmospheric observations into the 
ocean using strongly coupled ensemble data assimilation. Geophysical Research Letters, 43, 752–759.  

Smedstad, O. M., H. E. Hurlburt, E. J. Metzger, R. C. Rhodes, J. F. Shriver, A. J. Wallcraft, and A. B. Kara, 
2003: An operational eddy resolving 1/16 global ocean nowcast/forecast system. J. Mar. Sys., 40, 341–
361. 

Smith, K. D., A. M. Moore, and H. G. Arango, 2015: Estimates of ocean forecast error covariance derived 
from hessian singular vectors. Ocean Modelling, 89, 104–121. 

Smith, P. J., A. S. Lawless, and N. K. Nichols, 2017a: Estimating forecast error covariances for strongly 
coupled atmosphere–ocean 4D-Var data assimilation. Mon. Wea. Rev., 145 (10), 4011–4035. 

Smith, S., H. Ngodock, M. Carrier, J. Shriver, P. Muscarella, and I. Souopgui, 2017b: Validation and 
operational implementation of the Navy Coastal Ocean Model Four-Dimensional Variational Data 
Assimilation system (NCOM 4DVar) in the Okinawa Trough. Data Assimilation for Atmospheric, Oceanic 
and Hydro- logic Applications (Vol. III), Springer, 405–427. 

Snyder, C., T. Bengtsson, P. Bickel, and J. Anderson, 2008: Obstacles to high-dimensional particle filtering. 
Mon. Wea. Rev., 136, 4629–4640. 



5 10    I B R A H IM  H O T E I T  E T  A L .  
 
 
Sondergaard, T., and P. F. Lermusiaux, 2013: Data assimilation with Gaussian mixture models using the 

dynamically orthogonal field equations. Part I: Theory and scheme. Mon. Wea. Rev., 141 (6), 1737–1760. 
Song, H., I. Hoteit, B. Cornuelle, and A. C. Subramanian, 2010: An adaptive approach to mitigate background 

covariance limitations in the ensemble Kalman filter. Mon. Wea. Rev., 138 (7), 2825–2845. 
Sorenson, H. W., and D. L. Alspach, 1971: Recursive Bayesian estimation using Gaussian sums. Automatica, 

7, 465 – 479. 
Sraj, I., S. Zedler, C. Jackson, O. Knio, and I. Hoteit, 2016: Polynomial chaos-based Bayesian inference of K-

profile parameterization in a general circulation model of the Tropical Pacific. Mon. Wea. Rev., 144 (12), 
4621–4640. 

Sripitana, A., T. Mayo, I. Sraj, O. Knio, C. Dawson, O. Le Maitre, and I. Hoteit, 2017: Assessing an ensemble 
Kalman filter inference of manning’s n coefficient of a storm surge model against a polynomial chaos-
based MCMC. Ocean Dynamics, 67, 1067–1094. 

Stockdale, T. N., D. L. T. Anderson, J. O. S. Alves, and M. A. Balmaseda, 1998: Global seasonal rainfall 
forecasts using a coupled ocean-atmosphere model. Nature, 392, 370–373. 

Stroud, J. R., and T. Bengtsson, 2007: Sequential state and variance estimation within the ensemble Kalman 
filter. Mon. Wea. Rev., 135, 3194–3208. 

Subramanian, A. C., I. Hoteit, I. Cornuelle, A. J. Miller, and H. Song, 2012: Linear versus nonlinear filtering 
with scale-selective corrections for balanced dynamics in a simple atmospheric model. Journal of the 
Atmospheric Sciences, 69, 3405–3419. 

Talagrand, O., 2010: Variational assimilation. Data assimilation, Springer, 41–67. 
Tarantola, A., 2005: Inverse problem theory and methods for model parameter estimation. Society for 

Industrial and Applied Mathematics (SIAM), 339 pp. 
Tardif, R., G. J. Hakim, and C. Snyder, 2015: Coupled atmosphere–ocean data assimilation experiments with 

a low-order model and CMIP5 model data. Climate Dynamics, 45, 1415–1427. 
Temam, R., 1984: Navier-Stokes equations: Theory and Numerical Analysis, Vol. 343. AMS Chelsea 

Publishing. 
Tippett, M. K., J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker, 2003: Ensemble square-root 

filters. Mon. Wea. Rev., 131, 1485 – 1490. 
Toye, H., P. Zhan, G. Gopalakrishnan, A. Kartadikaria, H. Huang, O. Knio, and I. Hoteit, 2017: Ensemble data 

assimilation in the Red Sea: sensitivity to ensemble selection and atmospheric forcing. Ocean Dynamics, 
67, 915–933. 

Trémolet, Y., 2007: Model-error estimation in 4D-Var. Q. J. R. Meteorol. Soc., 133, 1267–1280. 
Tsiaras, K. P., I. Hoteit, S. Kalaroni, G. Petihakis, and G. Triantafyllou, 2017: A hybrid ensemble-OI Kalman 

filter for efficient data assimilation into a 3-D biogeochemical model of the Mediterranean. Ocean 
Dynamics, 67, 673–690. 

Ueno, G., T. Higuchi, T. Kagimoto, and N. Hirose, 2010: Maximum likelihood estimation of error covariances 
in ensemble-based filters and its application to a coupled atmosphere–ocean model. Q. J. R. Meteorol. 
Soc., 136, 1316–1343. 

Usui, N., S. Ishizaki, Y. Fujii, H. Tsujino, T. Yasuda, and M. Kamachi, 2006: Meteorological research institute 
multivariate ocean variational estimation (MOVE) system: Some early results. Advances in Space 
Research, 37 (4), 806–822. 

Van Leeuwen, P. J., 2009: Particle filtering in geophysical systems. Mon. Wea. Rev., 137, 4089–4114. 
Van Leeuwen, P. J., 2010: Nonlinear data assimilation in geosciences: An extremely efficient particle filter. 

Q. J. R. Meteor. Soc., 136 (653), 1991–1999. 
van Leeuwen, P. J., 2015: Representation errors and retrievals in linear and nonlinear data assimilation. Q. J. 

R. Meteorol. Soc., 141, 1612–1623. 
Verlaan, M., and A. W. Heemink, 1997: Tidal flow forecasting using reduced rank square-root filters. 

Stochastic hydrology and Hydraulics, 11 (5), 349–368.  
Vermeulen, P. T., and A. W. Heemink, 2006: Model-reduced variational data assimilation. Mon. Wea. Rev., 

134, 2888–2899. 
Verron, J., L. Gourdeau, D. T. Pham, R. Murtugudde, and A. Busalacchi, 1999: An extended Kalman filter to 

assimilate satellite altimeter data into a nonlinear numerical model of the tropical Pacific Ocean: Method 
and validation. Journal of Geophysical Research: Oceans, 104 (C3), 5441–5458. 

Vlasenko, A. V., A. Köhl, and D. Stammer, 2016: The efficiency of geophysical adjoint codes generated by 
automatic differentiation tools. Computer Physics Communications, 199, 22–28. 

Wang, X., C. H. Bishop, and S. J. Julier, 2004: Which is better, an ensemble of positive-negative pairs or a 
centered simplex ensemble. Mon. Wea. Rev., 132, 1590–1605. 

Wang, X., C. Snyder, and T. M. Hamill, 2007: On the theoretical equivalence of differently proposed 
ensemble–3DVAR hybrid analysis schemes. Mon. Wea. Rev., 135 (1), 222–227. 



D A T A  A S S I M I L A T I O N  I N  O C E A N O G R AP H Y :   
C U R R E N T  S TA T U S  A N D  N E W  D I R E C T I O N S    51 1  

 
Weaver, A., J. Vialard, and D. L. T. Anderson, 2003: Three-and four-dimensional variational assimilation with 

a general circulation model of the tropical Pacific Ocean. Part I: Formulation, internal diagnostics, and 
consistency checks. Mon. Wea. Rev., 131 (7), 1360–1378. 

Weaver, A. T., C. Deltel, É. Machu, S. Ricci, and N. Daget, 2005: A multivariate balance operator for 
variational ocean data assimilation. Q. J. R. Meteor. Soc., 131 (613), 3605–3625. 

Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. 
Wea. Rev., 130 (7), 1913–1924. 

Whitaker, J. S., and T. M. Hamill, 2012: Evaluating methods to account for system errors in ensemble data 
assimilation. Mon. Wea. Rev., 140, 3078–3089. 

Wikle, C. K., and L. M. Berliner, 2007: A Bayesian tutorial for data assimilation. Physica D: Nonlinear 
Phenomena, 230 (1), 1–16. 

Wu, L., V. Mallet, M. Bocquet, and B. Sportisse, 2008: A comparison study of data assimilation algorithms 
for ozone forecasts. Journal of Geophysical Research: Atmospheres, 113 (D20), 
doi:10.1029/2008JD009991. 

Wunsch, C., 1996: The ocean circulation inverse problem. Cambridge University Press, Cambridge, UK. 
Wunsch, C., and P. Heimbach, 2007: Practical global oceanic state estimation. Physica D, 230, 197–208. 
Xie, J., and J. Zhu, 2010: Ensemble optimal interpolation schemes for assimilating Argo profiles into a hybrid 

coordinate ocean model. Ocean Modelling, 33 (3), 283–298. 
Yang, S.-C., E. Kalnay, and T. Enomoto, 2015: Ensemble singular vectors and their use as additive inflation 

in EnKF. Tellus A: Dynamic Meteorology and Oceanography, 67, 26 536. 
Yaremchuk, M., P. Martin, A. Koch, and C. Beattie, 2016: Comparison of the adjoint and adjoint-free 4DVar 

assimilation of the hydrographic and velocity observations in the Adriatic Sea. Ocean Modelling, 97, 129–
140. 

Zhang, F., C. Snyder, and J. Sun, 2004: Impacts of initial estimate and observation availability on convective-
scale data assimilation with an ensemble Kalman filter. Mon. Wea. Rev., 132, 1238–1253. 

Zhang, M., and F. Zhang, 2012: E4DVar: Coupling an ensemble Kalman filter with four-dimensional 
variational data assimilation in a limited-area weather prediction model. Mon. Wea. Rev., 140 (2), 587– 
600. 

Zhang, W. G., J. L. Wilkin, and H. G. Arango, 2010: Towards an integrated observation and modeling system 
in the New York Bight using variational methods. Part I: 4D-Var data assimilation. Ocean Modelling, 35 
(3), 119–133. 

Zhang, Y., and D. S. Oliver, 2010: Improving the ensemble estimate of the Kalman gain by bootstrap sampling. 
Mathematical Geosciences, 42, 327–345. 

Zupanski, D., and M. Zupanski, 2006: Model error estimation employing an ensemble data assimilation 
approach. Mon. Wea. Rev., 134, 1337–1354. 

Zupanski, M., 2005: Maximum likelihood ensemble filter: theoretical aspects. Mon. Wea. Rev., 133, 1710– 
1726. 

 
 
 
 
 
 
 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [504.000 720.000]
>> setpagedevice


