

How well does interoperability between observation and prediction systems function? Example satellite observations

Pierre-Yves Le Traon – Mercator Ocean International

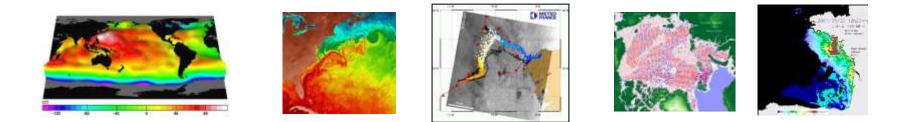
mercator-ocean.eu

Outline

Satellite Oceanography and Ocean Prediction

Use of satellite observations in models

Interoperability between satellite and prediction systems


The Copernicus Marine perspective

Conclusions

Unique contribution of satellites

- Provide key parameters / essential variables (sea level and ocean currents, SST, SSS, ocean colour, sea ice, waves, winds) needed to constrain ocean models through data assimilation and/or to validate them
- Global, real time and high space and time (repeat) resolution.
- Only means to observe globally the mesoscale variability
- □ Need to be complemented by in-situ observing system (ocean interior)

Data assembly and data processing issues for ocean prediction

The quantity, quality and availability of data sets and data products directly impact the quality of ocean analyses and forecasts.

Key satellite data processing needs for ocean prediction

Real time (analyses and forecasts) and delayed mode/reprocessing (reanalyses) (incl. QC) more effective data assembly from multiple sources more timely data delivery improvements in data quality better characterization of data errors

Differences in quality real time versus delayed mode data

Reprocessing issues : different types of reprocessing (e.g. climate/non-climate). Assembling the best data sets for a reanalysis is a major and essential step.

Error characterisation : essential for data assimilation

Processing steps and levels (from 1 to 4) before data assimilation

- ✓ It is <u>much</u> better <u>in theory</u> and for advanced assimilation schemes to use raw data (level 2 or in some cases level 1 when the model can provide data needed for level 1 processing). Data error structure more easily defined and less complex.
- ✓ In practice, not always true. Some high level data processing (e.g. correcting biases or large scale errors, intercalibration) is needed as it cannot be easily done within the assimilation systems.
- Examples : use of SST/SSS maps (L4), use of intercalibrated along track SSH data from altimeters (L3), use of ocean colour data rather than optical measurements (radiance), use of SSS data rather than brightness temperatures, etc...
- ✓ When feasible better to assimilate level 2 or level 3 data (or even level 1).

Interoperability between satellite observing and ocean prediction systems: ingredients

- **Operational interfaces with satellite ground segments from different satellite agencies**
- □ Homogenization of multiple data sources, intercalibration, standardized QC (real time & delayed mode)
- Organize the feedback to satellite ground segments (data quality, processing requirements, timeliness, new products)
- Organize the feeback to satellite agencies. Impact assessment.
- Preparing future missions : requirements from integrated system perspectives

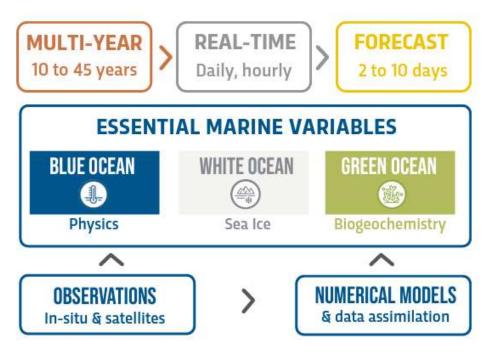
Copernicus Marine Perspective

COPERNICUS MARINE REGIONAL OCEAN PRODUCT DIVISIONS

2 Arctic Ocean

3 Baltic Sea

European North West Shelf Seas


5 Iberian Biscay Ireland Seas

6 Mediterranean Sea

👩 Black Sea

marine.copernicus.eu

mercator-ocean.eu

Copernicus Marine : Applications and Users

A wide range of applications (environment, society, economy) Support to EU policies (Green Deal)

55,000 subscribers (+ 20% per year)

ENVIRONMENT				SOCIETY				ECONOMY			
POLAR ENVIRONMEN MONITORING		OCEAN HEALTH	CLIMATE & CLIMATE ADAPTATION	POLICIES & OCEAN GOVERNANCE & MITIGATION	EDUCATION, PUBLIC HEALTH & RECREATION	SCIENCE &	EXTREMES, HAZARDS & SAFETY	COASTAL SERVICES	MARINE FOOD	NATURAL RESOURCES & ENERGY	TRADE & MARINE NAVIGATION
2000, the Con	ISFD, MSP, WFD, Habit vention on Biological Div is agreement / global sto	versity, WMO/UN	FCCC, IPCC, the		FD, MSP, WFD, I iduction, SDG 1, 2				ood Directive, Gre Directives, SDG 8,		
	OLAR ENVIRONMENT 6 SCIENCE & INNOVATION			9 MARINE FOOD				1	• •) En	vironment
	LIMATE & DAPTATION	6	POLICIES & OC GOVERNANCE MITIGATION		COASTAL SERVICES			8	•		
3 •	CEAN HEALTH	(7)	EDUCATION, P HEALTH & RECREATION		TRADE & MAVIGATIO	& MARINE			-		
4 C	ARINE ONSERVATION & IODIVERSITY		EXTREMES, HAZARDS & SAFETY			NATURAL RESOURCES				E	conomy

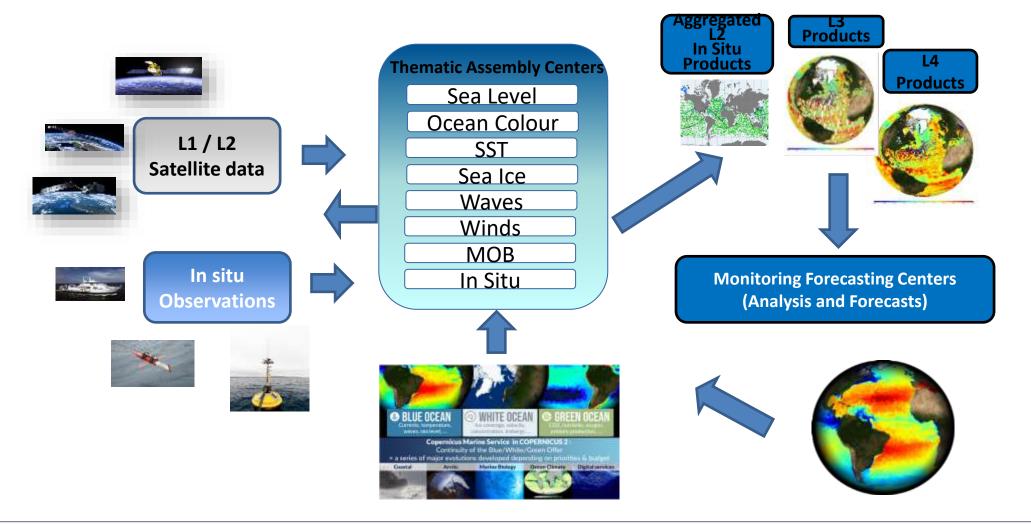
The essential role of satellite observations in Copernicus Marine

The Copernicus Marine Service is highly dependent on satellite observations (Sentinels, contributing missions). 80% of Copernicus Marine products depends on them.

Copernicus Marine role : operational interfaces (ESA, Eumetsat), feedbacks, requirements (present & future) and advocacy

- □ From integration of S1, 2, 3 A&B in Copernicus 1 to S6 A&B and S1, 2, 3 C&D in Copernicus 2.
- Preparing for Sentinel Expansion Missions.
- □ Support the EC for NG Sentinel mission design (post 2030).

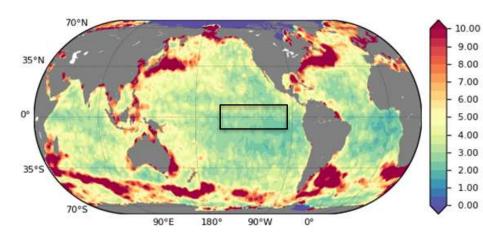
Day to day operations. Regular interactions with ESA and EUMETSAT in charge of ground segments:


- High level meetings to provide updates on the status of Sentinels and the Ground-Segments. This ensures an effective coordination of the data flow and a quick reaction to emerging issues.
- Ad-hoc or more technical meetings are organized to allow Copernicus Marine production centers to express their needs and provide feedback on data quality and availability.
- Participation to technical Sentinels reviews and quality meetings

Evolution of the Copernicus Space component. MOi / Copernicus Marine role is to provide user requirements through the European Commission and interact with ESA on options and trade offs from the Copernicus Marine user perspective.

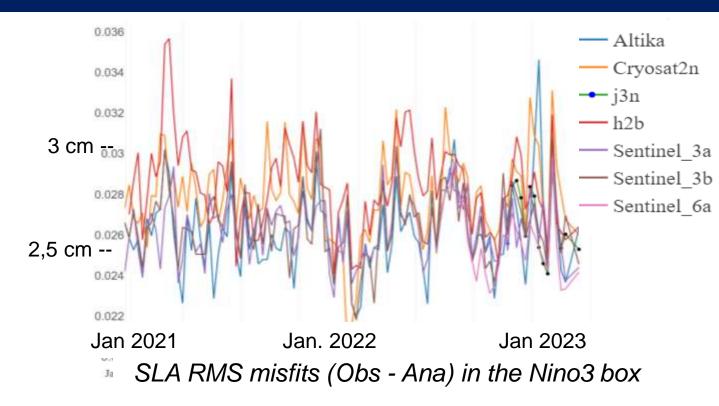
Expert centers in charge of satellite observations

Copernicus Marine Service Architecture : role of Thematic Assembly Centers



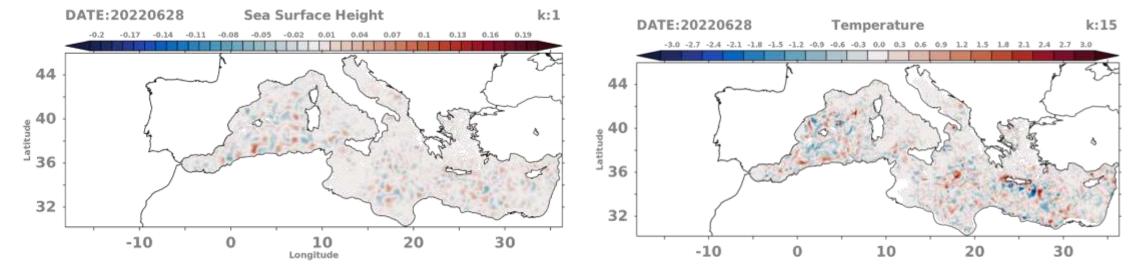
Assessing the impact of observations assimilated in the Copernicus Marine analysis and forecasts is important to:

- Understand how each type of observations are constraining the model forecasts toward a more realistic estimate
- □ Improve the use of observations and their error specification in the DA system
- □ Help designing the evolution of the observation network.


This generally requires running specific and often heavy simulations.

Monitoring the real time system performance in SLA

ERCATOR


Statistics on S3-B: Std Dev(Obs-Ana) for the global 1/12° system (Dec. 2020-Nov. 2021)

- > Largest RMS in energetic regions (WBC, ACC) dominated by meso scale activity
- > In low energetic regions, the analysis error in SLA is close to the observation error,
- > HY2 B et C2n has the higher RMS misfits as S6A, S3A, S3B and AltiKa has lower analysis error.

E. Clementi, CMCC

Map of Sea Surface Height difference (in metres) and Temperature at 45 m depth on 28 June 2022 between the experiment with and without S6A assimilated

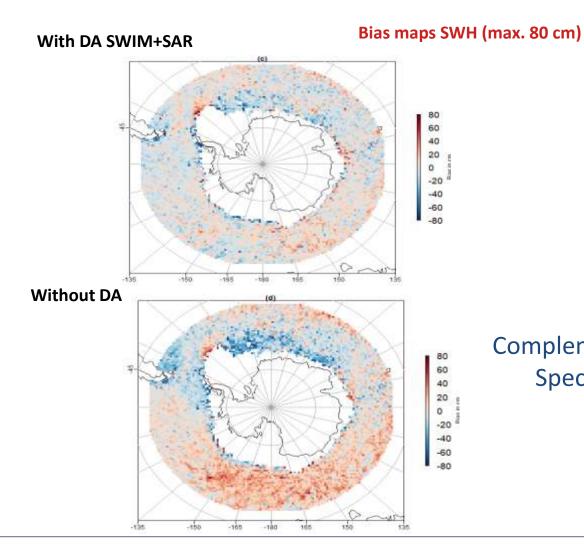
- Differences in meso-scale structures are found between the 2 simulations in SSH, associated with temperature change in the ocean interior
- □ Slight improvement of the SLA misfits to other altimeter observations

ERCATOR

Performance in Southern Ocean and complementary use of SWIM and SAR directional wave spectra

60

40


20

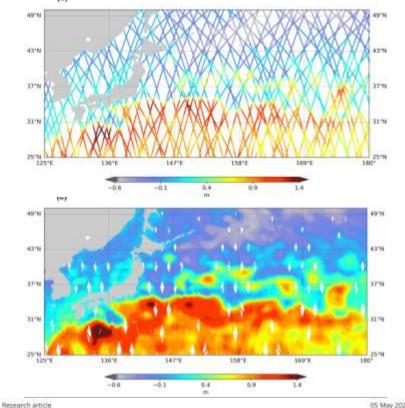
0

-20

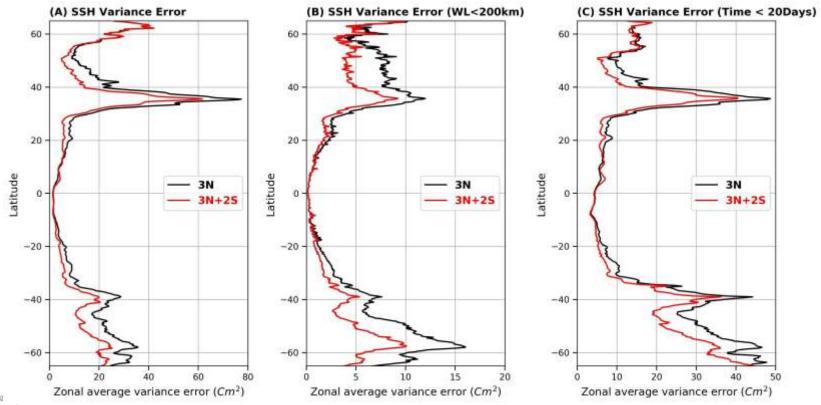
-40

-60

Complementary use of SAR and SWIM wave Spectra enhances SWH bias reduction


With DA SWIM

Observing System Simulation Experiments (S3 – NG TOP0)


7-day data coverage

MERCATOR

OCEAN NTERNATIONAL

Assimilation of simulated SSH From 3Nadirs vs 2 Wide-Swath

Contribution of a constellation of two wide-swath altimetry missions to global ocean analysis and forecasting

Mounir Benkiran¹, Pierre-Yves Le Traon^{1,2}, and Gérald Dibarboure³ ¹Mencatur-Ocean International, 31400 Toulouse, France ³Itienner, 29280 Plouzané, France ⁴Centre Hutional d'Études Spatiales, 31400 Toulouse, France

Correspondence: Mourir Senkiran (mbenkiran@mercator-ocean.fr)

Received: 09 Nov 2021 - Discussion started: 16 Nov 2021 - Reviseti: 14 Mar 2022 - Accepted: 21 Mar 2022 - Published: 05 May 2022

Zonal averaged error variance of SSH: (A) for full scales, (B) for scales less than **200 km** and (C) for time scales less than **20 days**; assimilation of 3Nadir (black lines) and assimilation of 3N+2Wisa-Swath (red lines). Units are cm²

Working and communcating on requirements

Present and future requirements both for in-situ and satellite observations (Sentinels) have been defined.

Based on impact assessment (OSE/OSSEs) and expert analyses.

Network of a large number of Copernicus Marine expert centers

SYSTEMATIC REVIEW ARTICLE

From observation to information and users: the Copernicus Marine Service perspective

 Pierre Yves Le Traon¹⁷, Antonio Reppucc¹⁷, Enrique Alvarez Fanjul¹⁵, Lotfi Aouf¹¹, Arno Behrens¹⁵, Maria Belmonte¹⁵, Abderrahim Bentzmy⁴, Laurent Bertino⁷, Vittorio E. Brando⁹, Matilde Kreiner³, Mounir Benkinan¹⁵, Bruno Buongiorno Nardell^{11,10}, Thierry Carval⁴, Stefania Cilibert¹⁰¹, Hervé CLAUSTR¹⁰⁰, Emanuela Clement^{101,10}, Giovanni Coppini¹¹, Giovanni Coppini¹¹, Fiorent Casparin¹¹, Maria De Alfonso Alonso-Muñoyerro¹, Geral Dibarboure¹¹, Frode Dinessen¹¹⁵, Marie Drevition¹, Yann Drillet¹, Yannice Faugere¹¹, Vicente Fernández¹⁴, Andrew Fleming¹⁰, M. Isabel García-Hermosa¹, Marico Sotillo¹¹, Gilles Garric¹, Florent Gasparin¹¹, Marion Gehlen¹¹, Mariaure Grégoine¹¹, Stephanie Guinehut¹¹, Mathieu Hamon¹, Chris Harris¹⁵, Fabrice Hernandez¹⁴, Jorgen Buus-Hinkler¹, Jacob L. Heyer¹, Juha Karvonen¹⁴, Susan Kay¹⁸, Robert King¹³, Thomas Lavergne¹⁰, Benedicte Lemieux-Dudon^{11,11}, Leonardo Lima^{11,11}, Chongyuan Mao¹³, Matthew J. Martin¹³, Simona Masina^{11,12}, Angelique Melet¹, Glenn Nolan¹⁴, Ananda Pascual¹⁷, Jenny Pistola^{11,13}, Atanas V. Palazov¹¹, Jenn-Francois Piolle¹⁸, Maria Isabelle Pujol¹⁷, Anne-Christine Pequignet¹³, Elisaveta Peneva¹³, Begoine Pérez-Gómez¹, Loic Petit de la Villeon¹³, Nadia Pinardi¹¹, Andrea Pisano¹, Sylvie Pouliquen¹¹, Rebecca A. Reid¹¹, Elisabeth REMY¹, Rosalia Santoler¹⁸, John Siddorn¹³, Jun She¹, Joanna Staneva¹⁵, Mat Stoffelen¹, Maria Tonani¹³, Luc Vandenbulcke¹⁴, Karina von Schuckmann¹, Gianluca Volpe⁴, Cecilie Wettre¹¹ and Anna Zacharioudak¹¹

- □ Strong links between satellite oceanography and operational oceanography since the start of global operational oceanography (GODAE end of the 90').
- □ Satellite observing and ocean prediction capabilities have been co-developed => good interoperability between the two systems. Good maturity in the interactions.
- Ocean prediction system architecture requires specific functions related to satellite data acquisition (real time and delayed mode), processing/reprocessing, impact assessment:
 - ✓ Operational interfaces with satellite ground segments.
 - ✓ Regular interactions with satellite agencies and ground segments is key : real time and reprocessing.
 - ✓ Capabilities to assess the impact and support the design of future missions are required.
- □ Future improvements. More standardized interfaces/interactions shared at international level between the different ocean prediction systems and satellite observing agencies => OceanPredict and DCC OceanPrediction