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4dVar physical+biogeochemical data assimilation for the NEMURO model

® We have successfully applied 4dVar-based state estimation to the medium complexity
(11 variable) NEMURO model.
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4dVar physical+biogeochemical data assimilation for the NEMURO model

® We have successfully applied 4dVar-based state estimation to the medium complexity
(11 variable) NEMURO model.

® We would like to use state estimation for our regional implementation of the
(37 variable) Darwin model.

® But 4dVar data assimilation requires tangent-linear and adjoint code which is difficult and
cumbersome to create and maintain when the code is changed:
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® The Darwin code is more complex and longer than the NEMURO code, and we do not want to
create tangent-linear or adjoint code for Darwin by hand.
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the 4dEnOlI technique

We aimed to develop and implement a data assimilation technique that

© does not require tangent-linear or adjoint code and is relatively easy to implement,

@® creates similarly good results as our benchmark 4dVar implementation, and

@ is fast enough computationally, to be used with the Darwin model.
The result is an ensemble optimal interpolation technique that is 4-dimensional (“4dEnOI") and uses
an ensemble of non-assimilative simulations to compute flow-dependent statistics:

4dEnOl update:
x" =x+ (aLo cov (X, H(X))) (e L o cov (H(X), H(X))) + R) ' (y — H(X))
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® There is no linearization of the observation operator.
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cov is the sample (ensemble) covariance function.

x is the first ensemble member.
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© does not require tangent-linear or adjoint code and is relatively easy to implement,

@® creates similarly good results as our benchmark 4dVar implementation, and

@ is fast enough computationally, to be used with the Darwin model.
The result is an ensemble optimal interpolation technique that is 4-dimensional (“4dEnOI") and uses
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The 4dEnOl implementation uses a background ensemble of non-assimilative simulations.
There is no linearization of the observation operator.

cov is the sample (ensemble) covariance function.

x is the first ensemble member.

The matrices L € R"stote *"ebs gnd I/ € R™obs*"obs are used for localization.
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the 4dEnOlI technique

We aimed to develop and implement a data assimilation technique that

© does not require tangent-linear or adjoint code and is relatively easy to implement,

@® creates similarly good results as our benchmark 4dVar implementation, and

@ is fast enough computationally, to be used with the Darwin model.
The result is an ensemble optimal interpolation technique that is 4-dimensional (“4dEnOI") and uses
an ensemble of non-assimilative simulations to compute flow-dependent statistics:

4dEnOl update:
x" =x+ (aLo cov (X, H(X))) (e L o cov (H(X), HX))) +R) ' (y — H(X))

The 4dEnOl implementation uses a background ensemble of non-assimilative simulations.

There is no linearization of the observation operator.

cov is the sample (ensemble) covariance function.

x is the first ensemble member.

The matrices L € R"stote *"ebs gnd I/ € R™obs*"obs are used for localization.

The scaling factor a €]0, 1] may be used to reduce the increment. In previous EnOl studies, it
was reduced from a value of 1 to account for the use of non time-evolving, static background error
covariance matrices. In our reference implementation, a = 1.
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ensemble generation using a PCA

® At the start, the ensemble is generated from a reference state using snapshots from a
long (non-assimilative) simulation and a principal component analysis (PCA).
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4dEnOl setup
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Why use 4dEnOI?

® We can use a static ensemble (not including the first ensemble member that is adjusted by the
data assimilation):

S

store H(X¢=1) _ H(X:—2) ]

® Updating a single ensemble member (including localization) is significantly cheaper than updating
the full ensemble (as in the EnKF; factor of ~ 1.8 in current implementation).
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comparison to 4dVar benchmark

—8— non-assimilative simulation
—8— 4dVar benchmark
—8— 4dEnOI reference

[ VPN
Test bed for the following data
assimilation experiments:

® ROMS NPZD model (NPZD_IRON)

‘%\ 0\ in U.S. west coast domain

2.5 ® 8 4-day cycles starting in April 2019

cyclel cycle2 cycle3 cycle4 cycle5 cycle6 cycle7  cycle8 (time with active b|o|ogy)

1 .55 (incl. log-chl)

s chiorophyll 2 ® real observations for sea level
8 = salinity anomaly (SLA), temperature,
I temperature .
7 — salinity and chlorophyll a (converted

AdVar dEnOl to observations of phytoplankton)

benchmark reference ®

<30000 observations in total per
cycle (some thinning)

® 4dVar benchmark uses same initial
conditions as the first ensemble
member in 4dEnOl

+ Jobs (incl. log-chl) cycles 2 to 8
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covariance localization

The 4dEnQl reference implementation uses:

® an ensemble of 25 members
® |ocalization: L = Ly o Ly o L, 0 Lya, € [0, 1]"state X obs

® horizontal localization (length scale: 10 grid cells)
® vertical localization (length scale: 300 m)
® variable localization (localization strength: 0.3; not applied to physical-physical covariance entries)

variable localization implementation

® Variable localization reduces the influence of spurious correlations between different variables even in spatially close grid
cells.

® Entries in the covariance matrices L and L’ are multiplied by w = 0.3 if they are associated with two different variables,
unless both variables are physical variables.
® Equivalent to defining a distance between variables:
doar (v, W) = {O if v = w or v,w € {physical variables} (Lvar) ;5 = o var(visvj)
1 otherwise With adjustable weight w set to 0.3.

® We did not explore more complex approaches, for example consider biological model dynamics when defining d.,,, for
example:
0 < dyar(nutrients, phytoplankton) < d,a (nutrients, zooplankton)
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the effect of localization
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comparison of surface correlations (25 ensemble members)
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comparison to 4dVar benchmark — surface increments

temperature salinity SLA phytoplankton NO3
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comparison to 4dVar benchmark — surface increments
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comparison to 4dVar benchmark — surface increments

temperature salinity SLA phytoplankton NO3
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summary

We developed a data assimilation technique that ...
© ... does not require tangent linear or adjoint code and is relatively easy to implement. v

® ... creates similarly good results as our benchmark 4dVar implementation. v

©® ... is fast enough computationally, to be used with the Darwin model. v

® Computer runtime increases linearly with number of variables (still lots of room for optimization and
especially parallelizing code).
® Memory usage remains constant with an increasing number of variables.

future steps:
® The 4dEnOlI framework is ready to be applied to the Darwin model.

® There are new challenges associated with Darwin state estimation, such as how to update
>6 phytoplankton variables with chlorophyll a data.
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