

K

THE

NATIONAL WEATHER SERVICE EuroSea/OceanPredict workshop on "Ocean Prediction and Observing System Design"

# Sensitivity of the Hurricane Analysis and Forecast System (HAFS) to Ocean Initialization from the Modular Ocean Model (MOM6) Analysis fields

29 June – 1 July, 2022

Yongzuo Li<sup>1</sup>, HeeSook Kang<sup>2,3</sup>, Cameron Book<sup>1</sup>, Maria Aristizabal<sup>1</sup>, Hyun-Sook Kim<sup>3</sup>, Avichal Mehra<sup>4</sup> <sup>1</sup>IMSG at NOAA/NWS/NCEP/EMC <sup>2</sup>University of Miami <sup>3</sup>NOAA/AOML/PhOD <sup>4</sup>NOAA/NWS/NCEP/EMC



# <del>ن</del>گ

औ

 $\approx$ 

明

 $\square$ 

212

# Outline

- 1. Introduction
- 1. MOM6 3DVAR data assimilation cycles
  - 1. HAFS-CDEPS-MOM6 coupling
  - 1. Interpolation from MOM6 3DVAR analysis to HAFS-HYCOM IC
- 1. Summary





औ

 $\aleph$ 

# **Motivation**

- Upper ocean thermal structure plays a very important role in the intensification of storms (Emanuel 1999).
- Tropical cyclones intensify when they pass over warm oceanic features (e.g. Leipper and Volgenau 1972, Jaimes and Shay 2015)
- Reduced inner-core sea surface temperature cooling is correlated with storm intensification (Cione and Uhlhorn 2003).
- Accurate ocean initial conditions are necessary for an accurate tropical cyclone intensity forecast (Halliwell et al. 2008, Le Hénaff et al. 2021)



# Objective

·Å.

 $\approx$ 

明

ž

Investigate the sensitivity of upper-ocean conditions and intensity of tropical cyclones in the Hurricane and Analysis Forecast System (HAFS) to ocean initialization from the Modular Ocean Model (MOM6) data assimilation system

515

- 1. RTOFS: The global operational Real-Time Ocean Forecast System at NOAA/NCEP/EMC
- 2. 3DVAR

ž

औ

 $\kappa$ 

四

 $\square$ 

212

- JCSDA: Joint Center for Satellite Data Assimilation
- JEDI: Joint Effort for Data assimilation Integration
- SOCA: Sea-ice, Ocean, and Coupled Assimilation (Marine DA: 3dvar, letkf, 3dhyb)
- 1. MOM6: The Modular Ocean Model (MOM) version 6 (Github GFDL repository) at NOAA/GFDL, NCEP, NCAR, Rutgers, FSU, ANU, et al
- 2. HAFS-CDEPS
- Hurricane Analysis and Forecast System (HAFS)
- Community Data Models for Earth Prediction Systems (CDEPS)
- 1. HAFS-HYCOM
- Hybrid Coordinate Ocean Model (HYCOM)



iagram of RTOFS - MOM6-3DVAR - CDEPS - HAFS system \* OBC: open boundary conditions

**WATIONAL WEATHER SERVICE** 

ž

औ

 $\approx$ 

明

 $\mathbf{\Lambda}$ 

512



Diagram of RTOFS - MOM6-3DVAR - HAFS-HYCOM systems \* OBC: open boundary conditions

# **SATIONAL WEATHER SERVICE**

ž

♪

512

Satellite observations: VIIRS JPSS SST, METOP SST, ADT

MOM6: Grid points 1135(Ion)X633(Iat)X50(Layer)

Downward short-wave radiation flux, SLP)

3DVAR: Static covariance based on BUMP (Background error on

Horizontal grid size 1/12 degree, Staggered Arakawa C-grid

GFS: 0.25 degree atmosphere forcing (U10, V10, T2, Q2, PRATE

Unstructured Mesh Package). Rossby radius based correlation scale

Vertical flat Layer (meter) = 5.05, 15.15, 25.25, ....., 5185.15, 5895.05;

Precipitation rate, DLWRF Downward long-wave radiation flux, DSWRF





⊿

515X

# **NATIONAL WEATHER SERVICE**

DA cycles: Every 6 hours

MOM6 3DVAR configuration





ž

 $\mathbf{\Lambda}$ 

12



Diagram of RTOFS - MOM6-3DVAR - HAFS-HYCOM flow chart



ž

 $\mathbf{\Lambda}$ 

51 23 21 23

#### MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020



**VATIONAL WEATHER SERVICE** 

# MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR increment SST

3dvar incr Temp Depth=5m 2020072012



ž

*ज*ै.

 $\approx$ 

哭

 $\square$ 

212

## MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR analysis SST

3dvar.ana Temp Depth=5m 2020072012Z





औ

ž

51 21 21

#### MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020



Sawtooth pattern time series of mean absolute error

Ombg, obs minus background Oman obs minus analysis

Both ombg and oman are relatively small

Ombg is larger than oman

# MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 RTOFS SSH/adt observations



MOM6 3DVAR assimilates RTOFS SSH/adt at 00, 06, 12, and 18Z.

Background check absolute threshold is 0.2 meter. It has always been 0.2 meter.

All these shown are of good quality and assimilated

# **VATIONAL WEATHER SERVICE**

ž

औ

 $\kappa$ 

四

 $\mathbf{\Lambda}$ 

212

# MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR increment SSH, SST, and SSS







All SSH, SST, and SSS increments are caused by RTOFS SSH/adt observations only

ocn.var.iter1.incr.2020-07-20T12:00:00Z.nc

ocn.var.iter1.incr.2020-08-06T12:00:00Z.nc

# **VATIONAL WEATHER SERVICE**

### Building a Weather-Ready Nation // 16

12

ž

औ

 $\approx$ 

四

## MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR analysis SST and SSH



SSH



**VATIONAL WEATHER SERVICE** 

Building a Weather-Ready Nation // 17

औ

51 23 51 23

#### MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020



#### Sawtooth pattern

Time series of SSH mean absolute error Ombg, obs minus background Oman, obs minus analysis

#### NATIONAL WEATHER SERVICE Building a Weather-Ready Nation // 18

ž

5

# MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 RTOFS T/S profile observations



ž

.

 $\approx$ 

MOM6 3DVAR assimilates RTOFS T/S profile at 00, 06, 12, and 18Z. All these observations shown are of good quality and assimilated

 $\mathbf{r}$ 

# MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR increment SST and SSS

SST incr



⊿

51 23 51 23

ž

ॵ

 $\approx$ 

四

SST and SSS increments are caused by RTOFS profile observations

**VATIONAL WEATHER SERVICE** 

Building a Weather-Ready Nation // 20

SSS incr

## MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 1/12 degree MOM6 3DVAR analysis SST and SSS

SST

ž

औ

 $\approx$ 

四日

 $\mathbf{\Lambda}$ 

51 23 51 23



SSS profile.3dvar.ana Salt Depth=55m 2020072012Z

**VATIONAL WEATHER SERVICE** 

#### MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020 3DVAR SWT mae ombg oman



# **VATIONAL WEATHER SERVICE**

ž

#### MOM6 3DVAR data assimilation cycles 7/20/2020 - 8/6/2020



ž

Sawtooth pattern

Time series of sea water salinity mean absolute error Ombg, obs minus background Oman, obs minus analysis

NATIONAL WEATHER SERVICE



R

# Hurricane Isaias (2020) forecast by HAFS using MOM6 SST and HYCOM SST 2020072812 - 2020080212

IC BEST: NHC Best track

MOM6 SST\_ana: MOM6 provides SST analysis to HAFS every 6 hours MOM6 SST\_bkg: MOM6 provides SST forecast to HAFS every 6 hours initialized at 2020072812 HYCOM SST: HYCOM provides SST forecast to HAFS every 6 minutes initialized at 2020072812





# Hurricane Isaias (2020) forecast by HAFS using MOM6 SST and HYCOM SST 2020073012 - 2020080412

IC BEST: NHC Best track

MOM6 SST\_ana: MOM6 provides SST analysis to HAFS every 6 hours MOM6 SST\_bkg: MOM6 provides SST forecast to HAFS every 6 hours initialized at 2020073012 HYCOM SST: HYCOM provides SST forecast to HAFS every 6 minutes initialized at 2020073012



NATIONAL WEATHER SERVICE

# Summary

- 1. RTOFS grid data are interpolated to MOM6 IC and OBC
- 2. GFS 0.25 degree fields are used as MOM6 atmospheric forcing
  - 3. Ran MOM6 3DVAR 6 hourly DA cycles assimilating RTOFS qc'ed SST, ADT, and profile obs
  - 4. Compared HAFS Hurricane Isaias (2020) forecast between using MOM6 SST and HYCOM SST
  - 5. In-progress:
    - Run HAFS-HYCOM cycles using MOM6 3DVAR analysis interpolated as HYCOM IC.



 $\mathbf{\Lambda}$ 

212

ž

ॵ

K