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= 10 cm of sea level rise 1s expected to occur by 2030-2050 and could double the frequency of extreme
flooding events*

= Reducing flooding risk requires:
= prevention (engineering hard or soft sea defences)
=  mitigation (preventing development or relocating communities)

» preparedness (having forewarning of a flood event)

* Vitousek, S., Barnard, P.L., Fletcher, C.H., Frazer, N., Erikson, L., Storlazzi, C.D., 2017. Doubling of coastal flooding
frequency within decades due to sea-level rise. Sci. Rep. 7 (1), 1399.
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forecast product

» UK Met Office boundary data

= Potential to roll out across UK

» Automatically runs a 3-day forecast

= Automatically runs a 5-day forecast

=  Model output in shallow water

» Empirical, depth-limited shoaling into the
shore

= Monitored coastal profiles used to predict
runup and overtopping at >200 locations

= 3 different empirical approaches to predict
overtopping
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https://coastalmonitoring.org/ccoresources/sweep/
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Dawlish installation,
March 2021 to 2022
1) Camera M,
2) WireWall
3) WireWands

4) B-Scan with anemometer

EACreamT

Coastal REsistance: Alerts & Monitoring Technologies




®=% UNIVERSITY OF
w PLYMOUTH

CREAM-T field measurements

National
Oceanography
Centre

Coastal Marine Applied Research

® Non-hazardous @ Potentially hazardous @ MHazardous
wave overtopping depths

Sea wall edge

®e
)
o]
12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00
Feb 26, 2022 Feb 27, 2022
date (UTC)
wave overtopping depths
Railway wall
o®
®
° SWes
12:00 15:00 18:00 21:00 00:00 03:00 06:00 09:00
Feb 26, 2022 Feb 27, 2022

date (UTC)




UNIVERSITY OF
PLYMOUTH

CREAM-T field measurements
CMAR B-SCANR.__

Coastal Marine Applied Research

1It

Sea \




®=% UNIVERSITY OF
% PLYMOUTH

CREAM-T field measurements
CMAR B-SCANK__

Coastal Marine Applied Research

: Penzance Storm Waves
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Multi-model approach needed to predict overtopping rate, Q

Dynamic natural variables influence Q:
= Waves
= Water level
= Bathymetry
= Wind
= Currents

Wave Height (Hs): 03/01/22 10:00

Static variables also influence Q:
» Sea defence type and geometry
= Location along sea defence
= Choice of overtopping equation

vertical datum

= Various sources of error in predicting/defining these parameters, and therefore also in predicting Q
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Water, level CMEMS

Water level, m ODN
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WaveBuoy

D3D 1km

CMEMS 1.5km

= Wave forcing clearly important to overtopping prediction

= OWWL D3D wave height (Hs) mean error in SW England +/- 40 cm (30 cm bias)

= CMEMS - similar?
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4 Effect of water level on predlctedDQ ) = OWWL’s Delft3D model
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Elevation (m ODN)

Uncertainty due to beach profile

Dawlish 01. 03-Mar-2022

Profile is stable, toe level is much lower than average (<10%ile)
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At Dawlish, a ‘toe mound’ on the seawall limited the
detectable beach area

Beach level in front of the toe varied by approx. +/-
0.5m

4 reliable scans of the low tide beach were achieved
between 11/02/22 -11/03/22

For OWWL, the missing ‘subtidal’ part of the profile
is interpolated out to the depth of wave forcing
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» Predicted Q at Dawlish was on average 1-2 times higher when toe level was at its lowest than at its highest

= Beach level variation was enough to alter the hazard warning by at least one level on each major event
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Penzance 01. 02-Mar-2022

Profile is eroding, toe level is lower than average
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Latest profile
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= At Penzance, a greater length of beach was measured

z 4

% = Beach level in front of the toe varied by approx. +/-1 m
el Sea wall

HE = 16 reliable scans of the low tide beach were achieved

between 11/02/22 - 11/03/22

| | | = For most tides, an ‘emergent’ (dry) seawall toe meant no
’ " Grosehore distance () reliable EurOtop prediction could be made, despite
considerable overtopping occurring
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» No reliable wind influence factors currently available for EurOtop equations

» Measured overtopping magnitude appears to be 2-4 times higher (lower) than predicted when

wind 1s blowing onshore (offshore)
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= Subtidal profile
= Nearshore wave shoaling
» Choice of EurOtop equation f b o I

» Alongshore variation — huge
difference! —
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» Forecasting wave overtopping hazard will be increasingly important as sea levels rise to help
communities prepare for nuisance and extreme coastal flooding events

* A multi-model approach is required to forecast wave overtopping discharge/hazard, which incurs
various sources of uncertainty

= Using novel field measurements we have started to look at the relative importance of these
uncertainties on the predicted overtopping rate, Q:

= Wave forcing (2-4 times variation in Q over study period)

= Water level forcing (0.15 times variation in Q over study period)

» (Coastal profile (1-2 times variation in Q over study period, order of magnitude for older profiles)
" Onshore/ offshore wind (2-4 times variation in Q over study period)

» Real time field measurements complement forecast systems:
= will help to quantify and reduce these uncertainties
» and can provide real-time warnings at key locations



