

Sources of uncertainty in coastal overtopping forecasts

By Kit Stokes¹, Tim Poate¹, Gerd Masselink¹, Jenny Brown², Margaret Yelland²

¹Coastal Marine Applied Research, University of Plymouth ²National Oceanography Centre

Sources of uncertainty in coastal overtopping forecasts

Wave Height (Hs): 03/01/22 10:00

- Motivation for research
- OWWL overtopping forecast
- **CREAM-T** field measurements
- Uncertainty due to wave and water level
- Uncertainty due to beach profile
- Uncertainty due to wind
- Other sources of uncertainty
- Conclusions

A research-informed consultancy to address important issues in the coastal and marine environment

Motivation for research

10 cm of sea level rise is expected to occur by 2030–2050 and could double the frequency of extreme flooding events*

- Reducing flooding risk requires:
 - prevention (engineering hard or soft sea defences)
 - mitigation (preventing development or relocating communities)
 - preparedness (having forewarning of a flood event)

overtopping forecast

2022-2022 r0 VOW AD3OMEMS

- Ukes waxanal MARtes CMEMSevale and IBdw)
 forecast product
- UK Met Office boundary data
- Potential to roll out across UK
- Automatically runs a 3-day forecast
- Automatically runs a 5-day forecast
- Model output in shallow water
- Empirical, depth-limited shoaling into the shore
- Monitored coastal profiles used to predict runup and overtopping at >200 locations
- 3 different empirical approaches to predict overtopping

overtopping forecast

Applied Research

Coas

overtopping forecast

overtopping forecast

- Profile variation at the coast is highly important to overtopping
- For a given storm, beach level influences overtopping discharge by an order of magnitude

Forecasting coastal overtopping at engineered and naturally defended coastlines

Kit Stokes^{a,*}, Tim Poate^a, Gerd Masselink^a, Erin King^a, Andrew Saulter^b, Nick Ely^c

⁶ School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK ⁶ Met Office, Fluoroy Road, Exeter, Devon, EX1 3PB, UK Emvironment Agency, Sir John Moore Houce, Bodmin, Cornwall, PL31 1EB, UK

CREAM-T field measurements

- 1) Camera
- 2) WireWall
- 3) WireWands
- 4) B-Scan with anemometer

CMAR

Coastal Marine Applied Research

CREAM-T field measurements

09:00

09:00

MAR

CREAM-T field measurements

Research

CREAM-T field measurements

Sources of uncertainty when forecasting overtopping

- Multi-model approach needed to predict overtopping rate, Q
- Dynamic natural variables influence Q:
 - Waves
 - Water level
 - Bathymetry
 - Wind
 - Currents
- Static variables also influence Q:
 - Sea defence type and geometry
 - Location along sea defence
 - Choice of overtopping equation

• Various sources of error in predicting/defining these parameters, and therefore also in predicting Q

uncertainty due to wave forcing

- Wave forcing clearly important to overtopping prediction
- OWWL D3D wave height (Hs) mean error in SW England +/- 40 cm (30 cm bias)
- CMEMS similar?

- Regardless of wave forcing used, OWWL reproduced the timing and shape of measured overtopping events well
- Choice of wave model influenced Q by 2-4 times (compared to using wave buoy data)

uncertainty due to water level

- OWWL's Delft3D model reproduces tide gauge data to within approx. 10 cm
- To test impact of this, water level varied by +/-10cm
- This varied overtopping discharge, Q by +/- 0.15 times

- At Dawlish, a 'toe mound' on the seawall limited the detectable beach area
- Beach level in front of the toe varied by approx. +/-0.5 m
- 4 reliable scans of the low tide beach were achieved between 11/02/22 – 11/03/22
- For OWWL, the missing 'subtidal' part of the profile is interpolated out to the depth of wave forcing

Uncertainty due to beach profile

- Predicted Q at Dawlish was on average 1-2 times higher when toe level was at its lowest than at its highest
- Beach level variation was enough to alter the hazard warning by at least one level on each major event

- At Penzance, a greater length of beach was measured
- Beach level in front of the toe varied by approx. +/- 1 m
- 16 reliable scans of the low tide beach were achieved between 11/02/22 – 11/03/22
- For most tides, an 'emergent' (dry) seawall toe meant no reliable EurOtop prediction could be made, despite considerable overtopping occurring
- Calibrating an overtopping equation for a dry seawall toe would be a useful contribution from the present data set

Uncertainty due to wind

- No reliable wind influence factors currently available for EurOtop equations
- Measured overtopping magnitude appears to be 2-4 times higher (lower) than predicted when wind is blowing onshore (offshore)

Other sources of uncertainty

- Subtidal profile
- Nearshore wave shoaling
- Choice of EurOtop equation
- Alongshore variation huge difference!

Conclusions

- Forecasting wave overtopping hazard will be increasingly important as sea levels rise to help communities prepare for nuisance and extreme coastal flooding events
- A multi-model approach is required to forecast wave overtopping discharge/hazard, which incurs various sources of uncertainty
- Using novel field measurements we have started to look at the relative importance of these uncertainties on the predicted overtopping rate, Q:
 - *Wave forcing* (2-4 times variation in Q over study period)
 - *Water level forcing* (0.15 times variation in Q over study period)
 - *Coastal profile* (1-2 times variation in Q over study period, order of magnitude for older profiles)
 - Onshore / offshore wind (2-4 times variation in Q over study period)
- Real time field measurements complement forecast systems:
 - will help to quantify and reduce these uncertainties
 - and can provide real-time warnings at key locations