Eurosea

Marine Heat Waves in the Mediterranean Sea: an assessment from the surface to the subsurface to meet national needs

H. Dayan¹, R. McAdam², M. Juza³, S. Speich¹, S. Masina²

EuroSea/OceanPredict workshop – June 30th, 2023.

¹LMD, IPSL, PSL - Ecole Normale Supérieure, Paris, France ² Ocean Modeling and Data Assimilation Division, CMCC, Italy ³ Balearic Islands Coastal Observing and Forecasting System (SOCIB), Palma, Spain

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862626.

Surface MHWs in the Mediterranean Sea

Recent works providing a comprehensive characterization of surface MHWs

Publication	Project	Data used	Period of study	Climatology period	(Sub)-regions	Metrics used	Method.
Dayan et al. (2022)	Eurosea WP2/OSR6	SST satellite + model	1993-2019	1993-2014	Whole Med 4 bio-regions	Frequency, duration, max. intensity, severity	
Juza et al. (2022)*	Eurosea WP6	SST satellite	1982-2020	1982-2015	Whole Med 28 sub-regions	Frequency, duration, mean & max. intensity	Hobday et al.
Darmaraki et al. (2019)	-	SST satellite + model	1982–2017	1982-2012	Whole Med	Frequency, duration, intensity, severity, max. spatial coverage	(2016)
Dayan et al. (in prog.)	Eurosea WP2/6/7	SST + subsurf. T satellite + model	1987-2019	1987-2016	Whole Med 18 EEZs	Frequency, duration, max. intensity	
			Ŷ	1	Ŷ	Ŷ	

Large variety due to data availability, strategy, stakeholders, relevancy etc.

EureSea

* Associated web-based application for the Mediterranean Sea https://apps.socib.es/subregmed-marine-heatwaves/

A general definition for a global identification of MHWs

Definition:

An anomalously **warm event** to be a MHW if it **lasts for five or more days**, with **temperatures warmer than the 90th percentile** (Hobday et al., 2016), based on a baseline period.

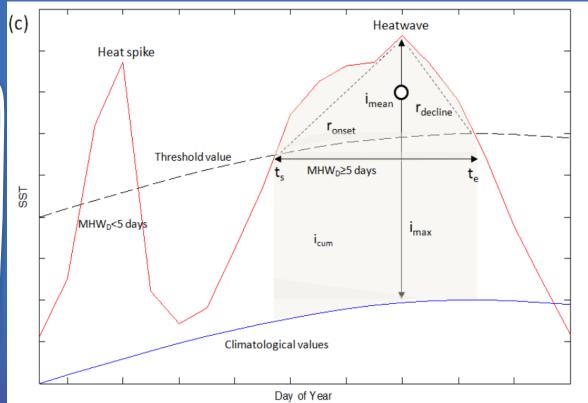


Figure 1 from Hobday et al. (2016).

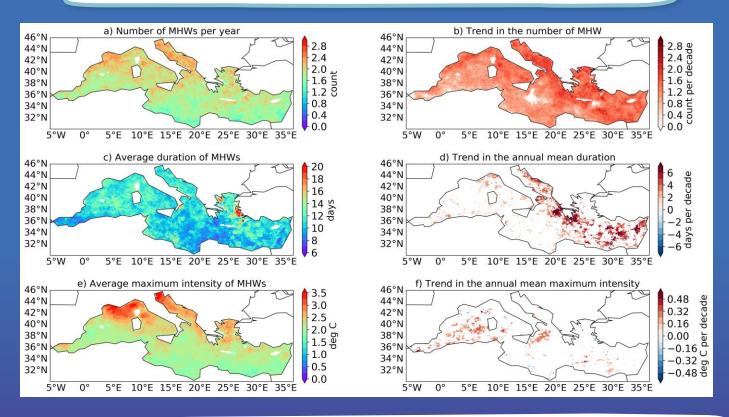
Eur Sea

Using the method described by (Hobday et al, 2016), specifically using the algorithm made freely available at <u>https://github.com/ecjoliver/marineHeatWaves</u>

Study period: 1987-2019 (corresponds to temporal coverage of the GLOBAL reanalysis) Climatology period: 1987-2016 Percentile target: 90th Climatology and percentiles smoothed with 31-day window

Data:

- SST_MED_SST_L4_REP_OBSERVATIONS_010_021 (REP, 1/20°, satellite observations). - MEDSEA_MULTIYEAR_PHY_006_004 (MED Reanalysis, 1/24°, 141 depth levels, satellite SLA and in-situ TS profiles assimilated, ERA5 forcing)


Variables: Vertical Temperature (from 0 up to 100 m)

Method and data

MHW Characteristics: Frequency, Duration, Intensity Maximum EureSea

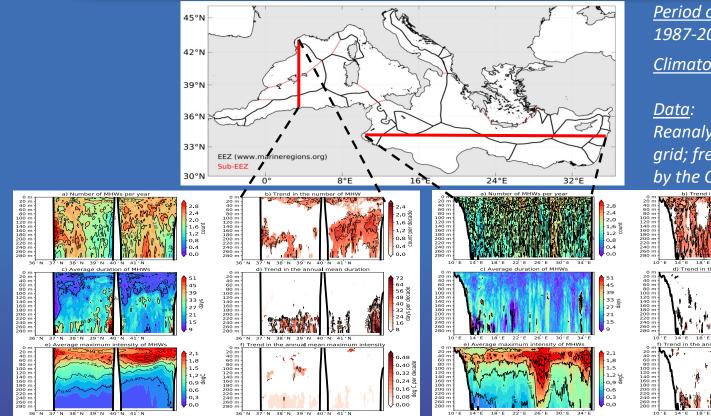
Surface MHWs in the Mediterranean Sea

Trend/mean of surface MHW characteristics

<u>Period of study</u>: 1987-2019 <u>Climatology period</u>: 1987-2016

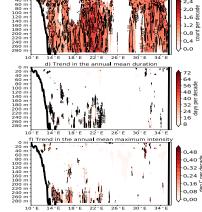
EureSea

Data: satellite observations (REP; 1/20° resolution grid; freely available and distributed by the Copernicus Marine Service).



Strong spatial variability (e.g., north-south, west-east, dynamical regimes)
 Substantial increase of MHW characteristics in most of sub-regions
 Strong and diverse environmental, social and economic impacts.

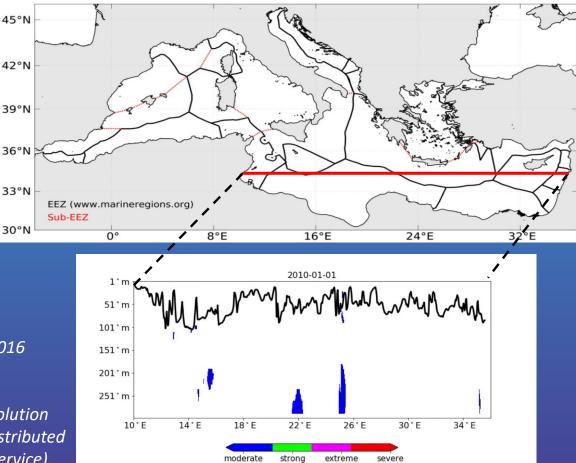
EureSea


Subsurface MHWs in the Mediterranean

Trend/mean characteristics of MHWs in subsurface

<u>Period of study</u>: 1987-2019 <u>Climatology period</u>: 1987-2016

Reanalysis (MED; 1/24° resolution grid; freely available and distributed by the Copernicus Marine Service).



Detection of MHWs up to several hundred meters

Strong signature in the upper 50m (high biological activity, main economic activities)

Subsurface MHWs in the Mediterranean

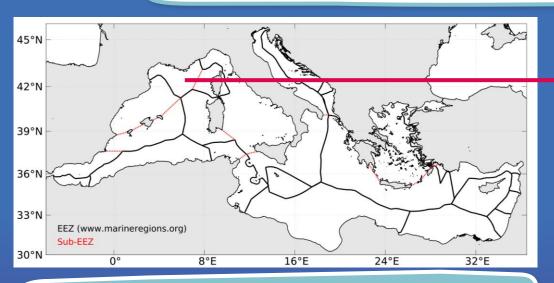
Daily evolution of MHWs & mixed layer depth over 2010-2019

<u>Period of study</u>: 1987-2019 <u>Climatology period</u>: 1987-2016

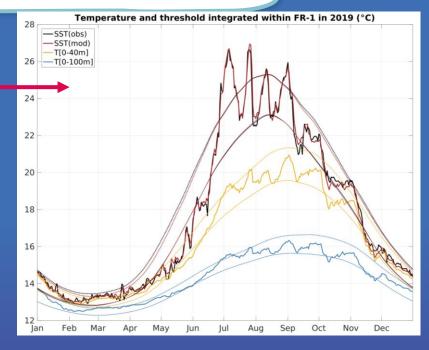
Eur Sea

<u>Period of study</u>: 2010-2019 <u>Climatology period</u>: 1987-2016

<u>Data</u>:


Reanalysis (MED; 1/24° resolution grid; freely available and distributed by the Copernicus Marine Service).

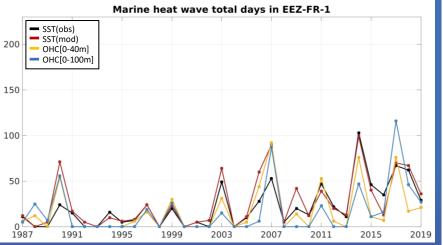
EureSea

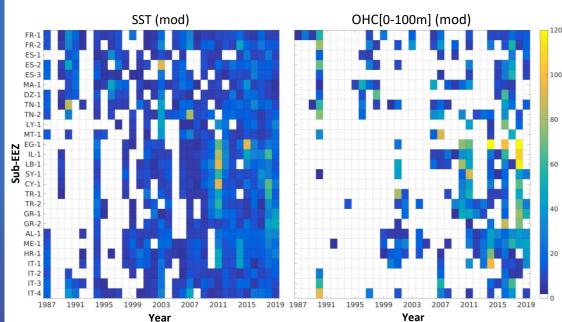

Stakeholder-oriented information

Integrated information in Exclusive Economic Zones

EEZ = where special rights are held by a sovereign country

- EEZ integrated information to establish mitigation & adaptation strategies at local/national scales.
- Capture the attention of the national authorities and governments.
- Provides an overview of sub-regional conditions, from which one can "zoom in" to specific stakeholders.




Good agreement obs/model surface MHWs
 Propagation in depth of some events

EureSea

Stakeholder-oriented information

Integrated information in Exclusive Economic Zones

Marine heat wave mean duration (in days)

Strong temporal & spatial variability in subsurface response at sub-EEZ scale

Conclusions

Methodology

- Consensus on methodology.
- Diversity of metrics / baseline periods.

MHWs at surface

- Substantial increase of MHW characteristics.
- Strong seasonal and spatial variabilities.

MHWs in subsurface

- Strong signature in the upper 50m.
- Detection of MHWs up to several hundred meters.
- Seasonal variations of subsurface MHWs.
- Role of dynamical (depth propagation through deep convection, downwelling...).

Impacts and actions

- Environmental, social and economic impacts.
- EEZ integrated information
 creation of a more direct narrative to capture the attention of the national authorities and governments.
- Species-specific versus statistics-based indicators ?