

Twitter: @RonanJMcAdam

www.cmcc.it

Seasonal forecasting of surface and sub-surface marine heat waves: a global validation and comparison

<u>Ronan McAdam</u>¹, Simona Masina¹, Silvio Gualdi²

¹Ocean Modelling and Data Assimilation Division, CMCC, Italy ² Climate Simulation and Prediction Division, CMCC, Italy

This project has received funding from the European Union's Horizon 2 research and Innovation programme under grant agreement No 86262

But first...the news

MHW currently taking place in the Med

- Two tropical-African anticyclones
- Initiated in May
- 5°C anomalies
- Spreading eastward

https://www.cmcc.it/article/marine-heat-wave-in-themediterranean-observations-and-predictions

Overview of our EuroSea work

CMCC & ECMWF work in EuroSea:

- Validate essential ocean variables in seasonal forecasts systems
- Define and produce user-relevant indicators e.g. Marine Heat Waves (MHWs)
- Move towards operational marine seasonal forecasting!

Aims: Seasonal Forecasting of MHWs

Questions to answer:

- Are MHWs well predicted?
- Focus on precision or propensity?
- Climatology: do we use fixed or moving?
- How much forecast skill comes from the warming trend?

(Jacox et al, 2022): Global forecast skill of surface MHW occurrence

Are subsurface MHWs more useful and more (Oliver et al, 2021): Long-term simulations in N. Pacific predictable?

Work done so far: OHC anomaly forecasts

Seasonal forecast skill of upper-ocean heat content in coupled highres systems McAdam, Masina, Balmaseda, Gualdi, Senan, Mayer. Jan 2022, Climate Dynamics

May: ASO

Difference between OHC and SST forecast skill (bottom):

OHC forecasts are more skillful than SST in many regions, typically because OHC anomalies are more persistent.

White=not statistically significant.

May: MJJ

Method: Defining subsurface MHWs

To define MHWs, let's start using ocean heat content (OHC) alongside SST:

- Upper-1cm of the ocean may not be so practically useful
- Daily cycle of many species covers a range of depths: resting, foraging, escaping heat...

• Caveats: coverage of subsurface observations, quality of reanalysis, nonexistent forecast data (<u>Andrzejaczek</u> et al, 2019): Daily vertical motion of a tiger shark in the Ningaloo Reef, Western Australia.

In this work, we: 1. Define subsurface MHWs using OHC 0-40m 2. Validate forecast systems against reanalysis 3. Compare prediction skill of subsurface and surface MHWs

Re-forecasts from CMCC-SPS3.5

	CMCC-SPS3.5			
Re-forecast period	1993-2016 (for OHC)			
Ensemble	40			
Forecast period	6 months			
Coupler	CPL7			
Atmosphere				
Model	CAM			
Horizontal Resolution	0.5°			
Vertical Resolution (top)	45 levels (0.3 hPa)			
Initialisation	ERA-Interim			
Ocean				
Model	NEMO v3.4			
Horizontal Resolution	0.25° tripolar grid			
Vertical Resolution	50 levels			
Initialisation	C-GLORS v6			

Validation: GREP

Global Reanal	vsis Ensem	ble Product	(GRFP) details
Olobal Realia	ysis Ensem			Jucians

	•		· · ·	
Name	C-GLORSv7	FOAM	GLORYS2V4	ORAS5
Institution	CMCC	UK MetOffice	CMEMS	ECMWF
Horizontal resolution	0.25°	0.25°	0.25°	0.25°
Vertical resolution	75 z-levels	75 z-levels	75 z-levels	50 z-levels
Surface fluxes	CORE	CORE	CORE	CORE + wave forcing
Atmospheric forcing	ERA-Interim	ERA-Interim	ERA-Interim	ERA-Interim until 2014 ECMWF NWP after 2014
Ocean-sea ice model	NEMO3.2- LIM2	NEMO3.2- CICE	NEMO3.1- LIM2	NEMO3.2- LIM2
DA variables	SIC, Arctic SIT, T, S, SSH, SST	SIC, T, S, SST, SSH	SIC, T, S, SST, SSH, runoff	SIC, T, S, SST, SSH
DA sources	OIv2d, PIOMAS, EN4, AVISO	OSISAFv2, EN4, ICOADS, AVHRR, ATSR, AMSRE, AVISOv3	CERSAT, CMEMS, AVHRR	OSTIA, Olv2d, EN4, AVISO

(b) Inter-annual Variability (c) Inter-annual Variability (c) Inter-annual Variability

(c) Ratio (EV/IAV)

Right: Ensemble spread of OHC0-300m compared to physical variability

Ocean reanalyses agree amongst themselves across most of the ocean (see EV/IAV), exceptions in red!

(a) GREP Ensemble Variability

Method: Defining MHW Indicators

Method: Defining MHW Indicators

Using a normalised intensity (sometimes called "strength" or, in it's discretised form, "category":

- Highlights exceptionality of an event (i.e. a 2°C intensity may be considered a different category depending on the area).
- Allows us to compare MHWs defined by SST and MHW

(a) Normalised Intensity (NI)

Forecast Time (days)

Results: Mean MHW characteristics (1993-2016)

 Obs. SST Number of events
 GREP SST
 GREP OHC 0-40m

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

 Image: Constraint of events
 Image: Constraint of events
 Image: Constraint of events

Normalised Intensity

Results: Skill of subsurface MHW forecasts

Correlation between number of MHW days/strongest intensity MHW in the summer season for SPS3.5 and GREP.

Black stippling: statistical significance.

- Widespread skill in two seasonal MHW indicators.
- Where the duration is well captured, so is the intensity.
- Regions of poor skill linked to forcings?

Correlation Skill Score

Results: Comparison to surface MHW forecasts

Black stippling: statistical significance in difference.

- Subsurface skill is generally higher.
- Regions of similarity are those where skill is high.
- Increase in skill is more widespread in intensity.
- Where the duration is well captured, so is the intensity.

Sub-surface vs. Surface MHWs Number of MHW days

correlation skill score

Difference

Results: Subsurface MHW Predictions in Practice

Take-home messages

(1) OHC should be considered as a complementary MHW indicator to SST

(3)

Seasonal forecasts predict subsurface events with greater skill than surface events. The longer-duration and slow-changing nature of subsurface MHWs is easier to predict.

(2)

The historical MHW record looks quite different for subsurface events - are we missing big events by focusing on SST?

(4)

More subsurface monitoring would help event tracking and, in the long run, boost validation reliability. Extending seasonal forecast record of "unused" marine variables would help too!

References

https://www.cmcc.it/article/marine-heat-wave-in-the-mediterranean-observations-and-predictions

Andrzejaczek, S., Gleiss, A.C., Pattiaratchi, C.B. and Meekan, M.G., 2019. Patterns and drivers of vertical movements of the large fishes of the epipelagic. *Reviews in Fish Biology and Fisheries*, *29*(2), pp.335-354.

Hobday, A.J., Alexander, L.V., Perkins, S.E., Smale, D.A., Straub, S.C., Oliver, E.C., Benthuysen, J.A., Burrows, M.T., Donat, M.G., Feng, M. and Holbrook, N.J., 2016. A hierarchical approach to defining marine heatwaves. *Progress in Oceanography*, *141*, pp.227-238.

Jacox, M.G., Alexander, M.A., Amaya, D., Becker, E., Bograd, S.J., Brodie, S., Hazen, E.L., Pozo Buil, M. and Tommasi, D., 2022. Global seasonal forecasts of marine heatwaves. *Nature*, *604*(7906), pp.486-490.

McAdam, R., Masina, S., Balmaseda, M., Gualdi, S., Senan, R. and Mayer, M., 2022. Seasonal forecast skill of upper-ocean heat content in coupled high-resolution systems. *Climate Dynamics*, *58*(11), pp.3335-3350.

Oliver, E.C., Benthuysen, J.A., Darmaraki, S., Donat, M.G., Hobday, A.J., Holbrook, N.J., Schlegel, R.W. and Sen Gupta, A., 2020. Marine heatwaves. *Annual Review of Marine Science*, *13*, pp.1-30.

Sanna et al, 2017, RP0285 – CMCC-SPS3: The CMCC Seasonal Prediction System 3

www.cmcc.it

