Forecast Sensitivity-Based Observation Impact (FSOI) in an Analysis-Forecast System of the California Current System

Andy Moore¹, Patrick Drake¹, Christopher Edwards¹, Hernan Arango², John Wilkin², Tayebeh TajalliBakhsh³, and Brian Powell⁴

1: Dept of Ocean Sciences, University of California Santa Cruz, U.S.A.

2: Dept of Marine and Coastal Sciences, Rutgers University, U.S.A.

3: RPS Group, Kingston R.I., U.S.A.

4: Department of Oceanography, University of Hawaii, U.S.A.

11 Regional Associations

GCOOS

CenCOOS, MARACOOS & PaclOOS near real-time analysis-forecast systems are all based on Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation.

What impact does each component of the observing system have on forecast skill?

Buoys

SECOORA

CariCOOS

South

CeNCOOS = Central and Northern California Ocean Observing System MARACOOS = Mid-Atlantic Regional Association Ocean Observing System PaclOOS = Pacific Island Ocean Observing System

SCCOOS

PaclOOS

AOOS

Tagged marine mammals

Satellite remote sensing

Gliders & AUVs

Argo floats

High frequency radars

Forecast Sensitivity-Based Observation Impact (FSOI)

Baker & Daley (2000); Langland & Baker (2004); Errico (2007); Trémolet (2008); Zhu & Gelaro (2008)

Forecast error: e(x)

The change in forecast skill due to assimilating observations:

$$\delta e = e^a(t_f) - e^b(t_f)$$

Adjoint -> impact of each obs

 $\delta e < 0$ Obs <u>improve</u> forecast skill $\delta e > 0$ Obs <u>degrade</u> forecast skill

The California Current System & CeNCOOS

- ROMS & 4D-Var
- $1/10^{\text{th}}$ degree resolution, 42 σ -levels
- COAMPS surface forcing
- Global HYCOM open boundary conditions
- Observations (2018 & 2019):

- satellite SST

- Aviso altimetry
- Argo profiling floats
- gliders
- HF radar surface radial currents
- Background quality control of obs
- 4-day 4D-Var windows (1 outer-loop, 9 inner-loops)
 - 4-day forecasts ("hindcasts")
 - Forecast metrics:

- central CA SST MSE e_{SST}

- central CA surface current MSE e_V
- central CA upwelling transport MSE $e_{\!W}$

- 37N transport MSE e_{37N}

Directly observed

Indirectly observed

Day-4 Forecast Error Differences

Forecast Sensitivity-Based Observation Impact (FSOI)

Percentage of obs that *improve* forecast skill

	MSE SST	MSE Velocity	MSE 37N	MSE W
Obs	e _{SST}	e_V	<i>e</i> _{37N}	e_W
SSH	60%	67%	60%	49%
Т	49%	52%	49%	42%
S	50%	53%	51%	45%
HF radial	58%	62%	58%	50%
SST	61%	58%	55%	50%

- Only ~ 40-50% of *in situ* observations *improve* the forecast skill
- ~60% of remote sensing obs *improve* forecast skill
- ~50-60% of all obs improve forecast skill, similar to experience in NWP

Local versus Remote Impacts

Significant remote influence on forecast skill of SST obs upstream along the coast of N. CA, OR and

Local SST obs have largest impact on central CA SST forecast skill

Monitoring of Observing System Data Streams and DA System Performance

Summary

- Only ~50% of obs improve forecast (agrees with experience in NWP, e.g. THORPEX, JCSDA IOS)
- Should more observations be assimilated (*cf* Gelaro *et al.*, 2010)?
- Can better use be made of existing observations (*i.e.* can more info be extracted from some obs)?
- Data thinning required to reduce relative impact of high volume obs (*e.g.* HF radar, SST *work in progress*)
- FSOI is useful for monitoring observing system and performance of 4D-Var system
- FSOI reveals local and remote influence of observing system components
- Forecast Sensitivity to Observations (FSO) provides complimentary information