Met Office

S3NG constellation:

Assessing the impact of S3NG scenarios in two global ocean forecasting systems

Robert King¹, Mounir Benkiran², Lucile Gaultier³, Matthew Martin¹, Elisabeth Remy², Clément Ubelmann⁴ Jennifer Waters¹

- 1. Met Office
- 2. MOi
- 3. OceanDataLab
- 4. DATLAS

www.metoffice.gov.uk

Met Office Preparing for future altimeters

Part of the A-TSCV project

- ESA requested evaluation of 2 proposals for S3NG
- Building on infrastructure of A-TSCV project

WiSA vs multiple Sentinel-3 altimeters in a Global System

- 2 Wide-Swath Altimeters (2xWiSA) flying along-side Sentinel-6
- 12 Sentinal-3-like SAR altimeters flying along-side Sentinel-6.
- Compared against current network of observations.

Although S3NG decision made

- useful to illustrate potential impacts of each scenario
- and that OSSE impacts can be highly system dependent

Challenges

- Making best use of both in situ and altimeter observations
- Uncertain magnitude of correlated errors problematic for DA

Example coverage from 12 x S3 constellation (top) and 2 x WiSA (bottom) over 1 day.

OSSE design – 12xS3 vs 2xWiSA

OSSE design

Met Office

- Similar set-up as described in Matt's overview.
- 1/12º Nature Runs (NR), previously assessed by Gasparin et al. (2018) and Benkiran et al. (2021)
- Observations simulated from NR with realistic errors, inc. SST, in situ T/S, SLA
- WiSA obs simulated using SWOTsimulator presented by L. Gaultier. Include KaRIn and residual WetTropo errors. Not yet with correlated phase/roll errors.
- OSSE experiments: 1/12° NEMO model, NEMOVAR (Met Office) and SAM2 (Mercator) DA systems, different initial conditions and fluxes.

Expt		Std Obs				2 x WISA
Nature Run	ECMWF-OS (MetOffice) ERA-Interim (MOi)					
Control	ERA-5	\checkmark	\checkmark	\checkmark		
NADIR	ERA-5	\checkmark		\checkmark	\checkmark	
WISA	ERA-5	\checkmark		\checkmark		\checkmark

System differences

- Assimilation window (1day vs 7days)
- Assimilation scheme (obs/bkg errors, lengthscales, balances, etc.)
- Nature Runs (NEMOv3.1 vs NEMOv3.6, etc.)
- Surface forcing of NR (ECMWF operational vs ERA-Interim)

Met Office OSSE design – 12xS3 vs 2xWiSA

OSSE design

- Similar set-up as described in Matt's overview.
- 1/12º Nature Runs (NR), previously assessed by Gasparin et al. (2018) and Benkiran et al. (2021)
- Observations simulated from NR with realistic errors, inc. SST, in situ T/S, SLA
- WiSA obs simulated using SWOTsimulator presented by L. Gaultier. Include KaRIn and residual WetTropo errors. Not yet with correlated phase/roll errors.
- OSSE experiments: 1/12° NEMO model, NEMOVAR (Met Office) and SAM2 (Mercator) DA systems, different initial conditions and fluxes.

Set Office Met Office OSSEs: Impact on SSH

- Both NADIR and WiSA experiments reduce SSH RMSE compared to Control
 - Global RMSE reduction of 10% (WiSA) and 16% (NADIR)
 - Greatest improvement in WBCs approx. 25% (WiSA) and 50% (NADIR)
- NADIR experiment shows improvement or neutral impact almost everywhere.
- Although positive overall, WiSA experiment highlights some regions of negative impacts.

 Similar global impact on RMSE reduction (~16%) in NADIR experiment and A-TSCV assimilation experiment in Met Office system

SSH RMSE difference (July 2009 compared to control, blue shows reduction in RMSE)

Set Office Met Office OSSEs: Impact on SSH

- Both NADIR and WiSA experiments reduce SSH RMSE compared to Control
 - Global RMSE reduction of 10% (WiSA) and 16% (NADIR)
 - Greatest improvement in WBCs approx. 25% (WiSA) and 50% (NADIR)
- NADIR experiment shows improvement or neutral impact almost everywhere.
- Although positive overall, WiSA experiment highlights some regions of negative impacts.

 Similar global impact on RMSE reduction (~16%) in NADIR experiment and A-TSCV assimilation experiment in Met Office system

SSH RMSE difference (July 2009 compared to control, blue shows reduction in RMSE)

Set Office MOi OSSEs: Impact on SSH

- Both NADIR and WiSA experiments reduce SSH RMSE compared to Control
 - Global RMSE reduction of 25% (WiSA) and 22% (NADIR)
 - Greatest improvement in WBCs
- Greater impact in the 2WiSA experiment (than NADIR) and larger impact than in Met Office system.

SSH variance difference (July 2009 compared to control, red shows reduction in RMSE)

Met Office Met Office OSSEs: Impact on Surface Currents

For surface velocities, both experiments show a reduction in global RMSE

compared to control, blue shows reduction in RMSE)

45°N

NADIR-CTRL

I5°N

Met Office OSSEs: Impact on Surface Currents **Met Office**

For surface velocities, both experiments show a reduction in global RMSE

Greatest improvement in WBCs approx. 15% (WiSA) and 30% (NADIR).

compared to Control

compared to control, blue shows reduction in RMSE)

Moi OSSEs: Impact on Surface Currents

- For surface velocities, both experiments show a reduction in global RMSE compared to Control
 - Global U/V velocity RMSE reduction of approx. 12% (WiSA) and 7% (NADIR)
- Greater impact in the 2WiSA experiment (than NADIR)
 - 2WiSA: larger impact than in Met Office system.
 - NADIR: smaller impact than in Met Office system.

Met Office OSSEs: Impact on Surface Currents **Met Office**

eddies.

Moi OSSEs: Impact on Surface Currents

Monthly mean surface current speed and SSH (July, 2015)

- Gulf Stream extension best represented by Swath and Nadirs experiments.
- Control represents well the large structures
- The assimilation of the 12xNADIR brings more correlation with the Nature Run, more mesoscale structures.
- With 2 WiSAs the model best represents the eddies and the mesoscale present in the Nature Run.

Mean monthly surface current speed (black lines) and SSH (background field)

Met Office Conclusions & Outlook

Global OSSEs to assess two S3NG scenarios

- Aimed to run as-similar-as-possible OSSEs while using our separate systems
- · OSSEs often tell us more about our system than about impact of new observations...

Both scenarios lead to significant improvements in analyses

- Different winner in each system!
 - Relative impacts of NADIR vs 2WiSA within each system most important.
- · Absolute impacts unlikely to be exactly what we'd see in operational systems
 - Larger in Mercator system, except for surface currents in the NADIR experiment which is better in the Met Office system
 - Largest in WBCs with 50%, 25% in SSH and 30%, 15% in surface currents (for NADIR, 2WiSA) in the Met Office system

Perspectives

- Systems will evolve significantly by launch of S3NG (or TSCV missions)
- · Expect complementary impacts from wide-swath altimetry and satellite TSCV observations
- Correlated errors will pose a challenge previous regional OSSEs highlighted potential limitations due to correlated errors (King et al. 2021).
- · Currently using power spectra to assess the minimum resolved length and time-scales in the analysed SSH fields

System	SSH	SSH		currents
	NADIR	WiSA	NADIR	WISA
Met Office	16%	10%	10%	6%
Mercator	22%	25%	7%	12%

Met Office

Extra Slides

Met Office Altimeter OSSEs: Power Spectra

Gulf Stream PSD-scores

- Spatio-temporal power spectra used to generate PSD-score of Ballarota et al. 2019.
 - Focussed on Gulf Stream region
- Minimum resolved length-scales similarly improved in NADIR and 2WISA runs compared to Control.
- Minimum resolved length-scales more consistent across time-scales in the NADIR experiment, perhaps as a result of the more evenly-sampled observations possible with a 12-satellite constellation.

significant improvement in the Golf Stream

Power spectra SSH error (variance-preserving):
WiSA (red line) reduction from 150 Km.

Time Spectral coherence :

A slight improvement of this coherence with **WiSA** on all frequencies.

Met Office Wide-swath Altimetry

Wide-swath altimetry observations will be subject to large correlated geophysical and instrumental errors.

- Presents a challenge for data assimilation schemes.
- These errors are significantly larger than that associated with current nadir SLA observations.
- Phase and roll errors in particular can introduce **spatially** correlated errors in excess of 10 cm.

	Error (cm)	RMSE	Extrema		
	All	6.2	39		
	Phase	4.9	26		
	Roll	3.1	16		
	Timing	1.8	6		
:	KaRIn	1.2	7		
	Baseline Dilation	0.6	4		
d	Residual Path Delay	0.5	3		
•	All nadir				
	All	1.4	6		

SWOT and nadir altimeter error statistics for 1-month of simulated observations (see King & Martin 2021).

0.0 0.1 0.2 Phase Error / m	b) -0.15 -0.10 -0.05 0.00 Roll Error / m

-0.04 -0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.04 Timing Error / m

a)

-0.2

0.10

0.15

0.05

Individual components of the SWOT errors for an example day. Note the difference in the scales for each error component. Created using the SWOTsimulator of Gaultier et al. (2016).