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1. INTRODUCTION 
 

The ocean total surface current velocity (TSCV) is the Lagrangian mean velocity at the instantaneous sea surface 

(Marié et al., 2020). Accurate forecasting of the ocean TSCV is important for applications such as search and 

rescue, tracking marine plastic and for coupled ocean/atmosphere/sea-ice/wave forecasting. Direct 

measurements of the TSCV are currently not available with global coverage. Various satellite missions are being 

proposed to measure TSCV globally such as SKIM (Ardhuin et al., 2019) and WaCM (Rodriguez et al., 2019). These 

satellite missions should provide new opportunities for assimilation of velocities into global forecasting systems 

in the future. 

The ESA Assimilation of TSCV (A-TSCV) project aims to investigate the design, implementation and impact of 

assimilating synthetic TSCV data in global ocean forecasting systems. The project will use observing system 

simulation experiments (OSSEs) to test the assimilation methodology and provide feedback on the observation 

requirements for future satellite missions. Synthetic observations are being generated for all standard data types 

as well as the new observations expected from SKIM-like satellite missions. Two operational global ocean 

forecasting systems are being developed to assimilate these data in a set of coordinated OSSEs: the FOAM 

system run at the Met Office (Blockley et al., 2014) and the Mercator Ocean system (Lellouche et al., 2018).  

Here we describe preliminary work to compare results of idealised TSCV observation experiments from the 

FOAM and MOI systems. We also show results of the estimation of horizontal and vertical forecast error 

covariance information for horizontal velocities.  

 

2.  IDEALISED OBSERVATION EXPERIMENTS 
 
 
Idealised observation experiments have been performed to demonstrate the increments produced by a single 

TSCV observation. In both systems TSCV innovations of 0.5 m/s in the zonal and meridional direction are 

assimilated at the same location. The experiments are configured slightly differently for the two forecast systems 

due to technical differences. In FOAM only the TSCV observations are assimilated. In the MOI system two 

experiments are performed with all the standard observations and with and without the TSCV observations, the 

increments due to the TSCV are calculated from the increment difference between the two experiments. Results 

for a location in the Mid-Atlantic are presented in Fig 1.  The increments for the two systems look very different. 

The velocity increment is larger for the MOI system and there is a large corresponding sea surface salinity (SSS) 

increment but very small increments in SSH and temperature. Conversely, there is no SSS increment in FOAM 

and larger increments in SSH and temperature. The differences in the increments reflects the differences in the 

forecast error covariance specification and multivariate balance between the two systems. 

 

 



    

    

Figure 1. Surface increments for speed, temperature, salinity and SSH.  From MOI (top) and FOAM (bottom). 

 

3. VELOCITY ERROR COVARIANCES 
 

FOAM error covariances are prescribed through a set of variances, length-scales and balance relationships. For 

the assimilation of TSCV data, new variances and length-scales are required for the unbalanced components of 

zonal (U) and meridional (V) velocities. The velocity balance in NEMOVAR is geostrophic so the unbalanced 

component represents the ageostrophic velocity component. We have used the NMC method (Parrish and 

Derber, 1992) to estimate the forecast error covariances. The NMC method used 48 hour and 24 hour forecast 

difference fields, valid at the same time, as a proxy for the forecast error. To produce an estimate of the 

unbalanced covariances we applied the inverse of the NEMOVAR balance operator to the forecast  

 

Figure 2. Zonally averaged horizontal forecast error correlation length scales for unbalanced surface U and V. 

These are estimated by fitting a Gaussian function with two correlation scales to the NMC error covariance data.  

Black and blue lines are length scales in the x-direction and y-direction, respectively. Dashed and solid lines are 

the long and short scale, respectively 

 

difference fields to remove the balanced (geostrophic) component. Fig. 2 shows the zonally averaged horizontal 

background error correlations for September-October-November for U and V. The short scales for U and V vary 



between around 40km at high latitudes, 70km at mid latitude and 100km in the tropics. The short U length scales 

have longer scales in the x-direction by 10-20km at most latitudes, while the short V length scales are fairly 

isotropic expect near the equator. The longer scales vary between approximately 200km in the mid latitudes to 

400km near the equator. Long correlations are seen in the x-direction corresponding to the latitude of the North 

and South equatorial currents. Interestingly the correlations scales are higher in the y-direction in the mid-

latitudes which could be due to the boundary currents. 

 

Figure 3. U vertical forecast error correlations with the surface. Plot (a) shows the global mean correlations 

plotted against a normalising depth. For the green, blue and black line the normalising quantity is the global 

mean MldRho, MldZ and Ekman depth respectively. The horizontal red line shows where the normalised depth 

is 1 and the vertical red line is the value of a Gaussian function when the depth variable equals the correlation 

length scale. The shaded region shows the standard deviation of the error correlations. Plot (b) shows a 

latitudinal section of the zonal mean vertical correlations with the surface. The green, blue and black lines are 

the zonal mean MldRho, MldZ and Ekman depth, respectively. 

 

Vertical forecast error correlations for U are shown in Fig. 3 and are compared to an Ekman depth calculated 

from the model’s vertical eddy viscosity and two mixed layer depth. The MldZ mixed layer depth is defined as 

the depth at which the density has increased equivalent to a temperature difference of 0.8 degrees at the 

surface, the MldRho mixed layer depth is the shallowest depth where density increases by 0.01 kgm-3 relative 

to 10m density. The latitude section plot shows how the correlations vary with latitude. In the profile plot, the 

global mean error correlations are compared to a normalised depth. When the normalising depth (Ekman 

depth or Mixed layer depth) is a good approximation to the correlation length scale, the correlation profile 

passes close to the red line intersect. From Fig. 3, MldZ (which is the mixed layer depth used to parameterise 

the Temperature and Salinity vertical forecast error correlations in FOAM) significantly over-estimates the U 

vertical forecast error correlations with the surface, while MldRho and the Ekman depth appear to provide a 

good approximation to the correlation scales. We plan to test both the MldRho and Ekman depth as a method 

for parameterising the vertical forecast error correlations in FOAM. 
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