Conducting and Performance Evaluation of a High-Resolution Regional Ocean Model in Yeosu-Gwangyang Bay using GFDL MOM6

Nayoung Park, Inseong Chang, Young Ho Kim

Division of Earth Environmental System Science, Pukyong National University

Results

Introduction

- Accurate coastal current prediction is critical for effective accident response and ocean environmental improvement.
- The existing current observation are limited to pointwise or the sea surface.
- Ocean model can overcome the limitation of observational data by providing improved current fields. However, ocean model has the numerical error.
- In this study, we are trying to develop a data assimilation system that using Coastal Acoustic Tomography(CAT) data into a high-resolution ocean model to improved current prediction.

Open boundary condition	MOHID (KIOST KOOS, KHOA ROMS)
Atmospheric forcing	ERA5 /Korea Meteorological Administration/
River Discharge	WAMIS (Water Resources Management Information System; Korea)

Coastal Acoustic Tomography

- Coastal Acoustic Tomography(CAT) is a remote sensing technology using underwater sound wave.
- CAT can infer physical variables such as temperature, salinity, and current by using ocean acoustic propagation speed.
- · CAT has been successfully to monitor the current field of coastal sea.
- CAT is powerful to monitor ocean regions and has been shown to improve an ocean model's ability (Park and Kaneko, 2000).

 \Rightarrow Flood and Ebb current are well simulated

Data Assimilation

- Assume the <u>observed time differences</u> are the <u>difference of the current changes</u>.
 In terms of the integration of temperature and velocity, it can be interpreted as the difference in sound speed.
- This research will evaluate the impact of sound speed influenced by sea temperature and velocity, aiming to reduce errors.

Reference

1. Evensen, G. 1994. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99(C5), 10143-10162. 2. PARK, Jae-Hun. 2000. KANEKO, Arata. Assimilation of coastal acoustic tomography data into a barotropic occan model. Geophysical research letters., 27.20: 3373-3376.