

Prediction of sea surface current around the Korean peninsula

using artificial neural network

based on numerical model outputs

<u>Jeong-Yeob Chae¹</u>, Hyunkeun Jin², Inseong Chang³, Young Ho Kim³, Young-Gyu Park², Jae-Hun Park^{1*}

¹Department of Ocean Sciences, Inha University, Incheon, Republic of Korea

²Ocean Circulation Research Center, Korea Institute of Ocean Sciences and Technology, Busan, Republic of Korea

³Division of Earth Environmental System Science, Pukyong National University, Busan, Republic of Korea

Study area

- Seas around Korean peninsula show different characteristics: Yellow Sea = tides dominant East Sea = mesoscale processes
- Numerical model with <u>fine-spatial</u> <u>resolution</u> is needed for prediction.
- However, it requires
 <u>high computational power</u>

Hard to be used in the near-real time prediction

Video prediction - AI

A Review on Deep Learning Techniques for Video Prediction. 2020

Video prediction - AI

https://coxlab.github.io/prednet/

Video prediction – application on OGCM

Questions

- 1. For sea surface current (SSC), can it be forecasted?
- 2. Typhoon can be considered in the network?
- 3. Could it have reasonable performance, when compared with the in-situ SSC data?

➡

AI can be another efficient way of SSC prediction

Data

```
Oceanic inputs – OPEM reanalysis data
Time resolution: daily
Spatial resolution: 1/24°
```

- Sea surface current (U, V)
- Sea surface height (SSH)

Atmospheric inputs – ECMWF ERA5 reanalysis data Time resolution: hourly \rightarrow daily Spatial resolution: $1/4^{\circ} \rightarrow 1/24^{\circ}$

- 10 m above surface wind velocity (U10, V10)
- Train set: 2011–2020 (10 years)

• Test set: 2021-2022 (2 years)

Metrics

RMSE

$$RMSE(t) = \sqrt{(f(t) - o(t))^2}$$

Anomaly correlation coefficient (ACC)

$$ACC(t) = \frac{(f(t) - c(t)) \cdot (o(t) - c(t))}{\sqrt{(f(t) - c(t))^2}} \sqrt{(o(t) - c(t))^2},$$

(t is the time, f(t) and o(t) are forecasted and observed state value,

the c(t) is the daily climatological mean value during the train period)

Vector distance (D) $D = |\overrightarrow{U_f} - \overrightarrow{U_o}|$ $(\overrightarrow{U_f} \text{ and } \overrightarrow{U_o} \text{ are the forecasted- and observed-state vector of SSC})$

SSC-net

- Sea surface current (SSC) estimation and prediction

Dual encoder

- Enabling different shapes of ocean and air parts
 ex) [time, lon, lat]
 ex) [time_a, lon, lat], [time_b, lon, lat]
- Can include winds of the next day ex) the next day's daily winds ex) [3, lon, lat], [3+1, lon, lat]
- Can change the time-resolution ex) daily to 6-hourly winds ex) [3, lon, lat], [3 X 4, lon, lat]

SSC = Sea surface current

SSC prediction – concept

Forecast using AI (ocean) with 3-input days.

SSC = Sea surface current

SSC prediction – concept

Forecast using AI (ocean) with 3-input days.

SSC = Sea surface current

SSC prediction – concept

Forecast using AI (ocean) with 3-input days.

SSC-net predictions (5-day predictions)

No tidal current!!

SSC-net predictions (5-day predictions)

SSC-net predictions (5-day predictions)

SSC-net performance depending on input periods

Normalized SSC errors depending on forecast days

[input days = 3]

Comparisons of SSC with the drifter tracks

Daily variation of models

- Analysis data shows higher daily variation no data-assimilation for SSH
- The network learned the pattern of reanalysis data

Conclusions

- The U-shaped 3-D CNN model is applied to predict the sea surface current around Korean peninsula.
- The AI model including the next-day wind data shows the better performance than the other models. In addition, it could successfully simulate extreme events caused by the typhoon.
- The trained pattern can be override to the analysis data.
- It means it can be used in the near-real time prediction task with the pattern of reanalysis model.
- High resolution ocean prediction system using CNNs can be a practical and efficient way with a lightweight computing power.

OGCM

Ocean general circulation model (OGCM)

- one-way interaction

- Data-assimilation, high resolution...to make more realistic processes
- Hard to be applied in near-real time prediction tasks
- Need efficient ways for sea surface current (SSC) forecasts

Comparison with drifter tracks

3. When compared with the in-situ SSC data?

Model	OPEM Reanalysis (used for the training)	OPEM Analysis (for forecast system)		
Surface boundary conditions	ECMWF - ERA5	KMA - GDAPS		
Open boundary conditions	CMEMS - Global <mark>reanalysis</mark>	CMEMS - Global analysis and forecast		
Data-assimilation	SST, <mark>SSH</mark>	SST		

Normalized SSC errors depending on forecast days

SSC-net errors depending on predicting days

Predictions [input days = 3]

Effect of temporal resolutions of wind (daily/6hourly)

Effect of temporal resolutions of wind (daily/6hourly) [input days = 3]

Effects of input days on the current prediction

[SSH] Prediction using U, V, SSH, Wind+

- Error distribution of SSH (RMSE_{SSH}) for the 1st prediction day (Input days = 3)

SSC-net performance depending on diff. variables

- Error distribution of SSC prediction for the 1st prediction day
- Performance is similar for the P_{uv,wind} and P_{uv,ssh,wind}
- With the next day's wind, overall error is decreased

SSC-net performance depending on input periods

Performance for the next day

Effects of input days on the current prediction

Prediction using U, V, SSH, Wind+

- Error distribution of uv-component averaged RMSE (RMSEuv) for the 1st prediction day (Input days = 1, 3, and 5)
- Overall error decreases with 3 to 5 input-days

Question: comparison with OPEM forecast

Sun	Mon	Tue	*Wed	Thu	Fri	Sat
			Initial data	1) Permanent DA-run		
Sun	Mon	Tue	*Wed	Thu	Fri	Sat
1) Permanent DA-run Initial		Initial data	2) Tentative DA-run			
Sun	Mon	Tue	*Wed	Thu	Fri	Sat
2) Tentative DA-run		Initial data	3) 10day Prediction-run			
		Tue	Wed	Thu	Eri	Cat

 $\square \square . KOOS OPEM \square \square \square \square \square$