

Global and Mediterranean Operational Forecasting systems @ CMCC - Italy OPOS-WG A. Cipollone, D. Iovino, E. Clementi, S. Masina, G. Coppini

www.cmcc.it

OPST-8 Meeting 6-10 Nov 2023

Website with

latest bulletin

5 days Forecast

- Hydrodynamic Model (NEMOv3.6-LIM2)
 - Resolution: ORCA grid at 1/16, 98 vertical level
 - Heat and Freshwater correction on-line
 - > SIC nudging
 - Daily initialization through Incremental An. Update (IAU)
- Assimilation system (OceanVar)
 - > Resolution: ORCA grid at 1/16, 98 vertical level
 - > 3DVAR for T/S, SST and SLA

Scheme of assimilation cycle

@equator https://gofs.cmcc.it/ ~3-4 km @60°

~7 km

Next advances in the system

- Update of the ocean and sea-ice model
- Inclusion of a longer analysis (weekly basis)
- New atmospheric forcing (NCEP 1/4 deg -> ECMWF 1/10 deg)

- New scheme for DA parallelization
- New SST operator based on ML

GODAE/OceanPredict intercomparison

 Using the GODAE/OceanPredict collected data, a validation against in-situ T/S, satellite SLA and drifter SST is performed and disseminated via the common ftp

Summary of 2023 statistics

 The present error for T and S is about 0.6 deg a and 0.1 psu integrated over the water column for the best estimate and 0.75 degC and 0.14 psu for the first day of forecast

2023 Timeseries for T and S

0.0

0.1

0.2

0.3

[psu]

0.4

0.5

0.6

GODAE/OceanPredict intercomparison

• Using the GODAE/OceanPredict collected data, a validation against insitu T/S, satellite SLA and drifter SST is performed and disseminated via the common ftp

Summary of 2023 statistics

- Evolution of T and S RMSE is pretty stable with the increasing forecasts lead time
- Need to improve the error of T and S at depth (>1000m)

RMSE evolution with the day of forecast

GODAE/OceanPredict intercomparison

Surface SST and SLA validation, a negative bias is present in the SST (model is colder than drifters' observation) A new SST observation operator is under development to reduce the bias.

-0.04

Spatial RMSE for the best estimate GOFS SST - OBS, rmse, best estimate, 20230101-20230910 res.: 1.0 deg. 180 60°F 120°E 180 60°N 30°N SST 30° 60° 60°F 120°E 180 180 0.0 0 7 0.4 0.6 0.8 1.0 [dea.C] GOFS SLA - OBS, rmse, best estimate, 20230101-20230910 res.: 1.0 deg. 1809 120°W 60°W 0° 60° 120°E 60°1 30°N 0° SLA 30°S 60° 60°W 60°E 120°E 180 1809 120°W 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 [deg.C]

Global Ocean Atlantic Atlantic Atlantic Pacific Pacific Pacific Ocean South North Tropical South North Tropical South Indian Ocean Australasia

BIAS/RMSE evolution with the day of forecast

TC Larry became a major Category 3 hurricane early on September 4th 2021 (at 15.2^oN and 42.7^oW). The water masses deeper than ~100m rise up towards the sea surface with temperature lower than the pre-hurricane conditions

Overview of present status and advances for MedFS

- Model (**NEMOv3.6 WW3v3.14**)
 - > Resolution: 1/24, 141 vertical level
 - > Tides (8 components)
 - > Heat flux correction with Sat. SST
 - Daily Direct initialization
- Assimilation system (OceanVar)
 - Resolution: 1/24, 141 vertical level
 - > 3DVAR for T/S, and SLA

Website with latest bulletin <u>https://medfs.cmcc.it/</u>

ECMWF atmospheric fields: Spatial resolution: 1/10° Temporal resolution:

<u>Forecasts</u>: 1hr – 3hrs – 6 hrs Analysis: 6 hours time resolution

1000 42°N 2000 39°N 3000 36°N 33°N 4000 30°N 18°W 9°W 9°E 18°E 00 27°E 36°E [m]

Lateral Boundary conditions: Atlantic: Daily NRT analyses and forecasts from Copernicus Global Forecasting System (GLO-MFC) @ 1/12, 50 vert lev. Dardanelles: box model (Maderich et al. 2015) daily clim. + Temperature from GLO-MFC

Mediterranean system – MedFS EAS8 (Copernicus)

- Model (**NEMOv4.2 WW3v6.07**)
 - ▶ Resolution: 1/24, 141 vertical level
 - Tides (8 components)
 - > Heat correction with Sat. SST
 - Daily Direct initialization
- Assimilation system (OceanVar)
 - ▶ Resolution: 1/24, 141 vertical level
 - > 3DVAR for T/S, and SLA

+ new EOFs + assim Atlantic + updated QC

Land river runoff:

Surface boundary condition for **39** major rivers with annual mean discharge > 50 m³/s using climatological monthly mean values Po river daily observations

Salinity

T & S Model Skill wrt in-situ observations

Temperature

New version: Overall decrease of the model error at all depth and bias especially al larger depths

SLA & SST Model Skill wrt satellite observations

New version: SLA and SST errors decrease of ~10%

MedFS Forecasting Extreme Events

- MedFS correctly reproduced Medicane lanos path & SST decrease (not shown)
- Model SSH in agreement with Katakolon TG Underestimation ~ 4 cm at peak
 → Clementi et al. 2021 in OSR6
- MedFS used to force high res. (3km to 100m) unstructured grid model (red box) → reduced error at peak

Contribution from I. Federico (CMCC)

MedFS predicting Marine Heat waves Mc Adam et al. 2023, Submitted in ORS8

Venice Acqua Alta November 2022

MedFS **predicting Acqua Alta events** in Venice with 3 days in advance

- The CMCC Global and Mediterranean Sea operational systems are constantly ameliorated to improve the forecast accuracy
- The systems are validated before delivering an updated version and continuously monitored during operations
- Validation assessment is performed by comparing model daily analysis and forecast fields with respect to satellite and in-situ observations
 - **Global**: intercomparison within Ocean Predict IV-TT
 - Mediterranean: operational validation produced within Copernicus Marine Service
- Both systems produce accurate data to represent and forecast **extreme events**

Thanks

