

JMA operational ocean prediction system - MOVE/MRI.COM

Goro Yamanaka, Yosuke Fujii, Norihisa Usui, and Nariaki Hirose Meteorological Research Institute Japan Meteorological Agency

OPST-8 Meeting, Busan, 8 Nov. 2023

Overview of JMA operational systems

Global System - MOVE/MRI.COM-G3

 To monitor global ocean conditions and initialize a coupled atmosphere-ocean model for subseasonal-to-seasonal prediction.

Regional System – MOVE/MRI.COM-NP/JPN

 To monitor and predict coastal and open ocean around Japan, including the meandering of the Kuroshio, the intrusion of the Oyashio, and sea level rise in the coastal areas.

Global System - MOVE/MRI.COM-G3

• Analysis model (G3A)

- Resolution: 1°x0.3-0.5°
- > Global tripolar grid coordinate
- In-situ TS profiles, satellite altimetry data, and SST objective analysis are assimilated through 4D-Var.
- Sea Ice: 3D-Var

• Forecast model (G3F)

- Resolution: 0.25° x 0.25°
- > Global tripolar grid coordinate
- Constrained to TS fields of G3A by IAU downscaling
- > Sea Ice 3D-Var (the same as G3A)
- You can find the details in Fujii et al. (2023), Frontier in Climate (DOI:10.3389/fclim.2022.1019673)

MOVE/MRI.COM-G3 (Global System)

◆JMA/MRI-CPS3

- Atmospheric Model: TL319L100 (GSM2003) ~55km
- Ocean Model: 0.25 °× 0.25 ° L60 (MRI.COM v4.6)
- Initial Condition: JRA-3Q for atmosphere

MOVE/MRI.COM-G3 for ocean

T, S, SSH (4D-Var) sea-ice (3D-Var)

- Forecast Period: 6 months
- \blacktriangleright Ensemble: 5-members per day \times 11 LAF

NINO.3

Representation of Tropical Instability Waves

27.4 27.8 28.2 28.6 29 29.4 29.8

- Tropical Instability Waves (TIWs) are not clear in MGD-SST due to smoothing property of optimum interpolation.
- In contrast, DA systems reproduce SST variation associated with TIWs reasonably thanks to dynamical interpolation using forward and adjoint models.

Capacity to reduce data-misfits effectively (Comparison with assimilated data)

Bias from the objective SST analysis

4D-Var effectively reduces the SST bias from the objective SST analysis which is assimilated, compared with 3D-Var.

- RMSDs from assimilated Argo data are also generally reduced by 4D-Var.
- Thus, 4D-Var more effectively reduces the data-misfits.

Difference of RMSDs from assimilated Argo data (4D-Var – 3D-Var)

Blue: 4D-Var is better

Regional System - MOVE/MRI.COM-NP/JPN

COLL RESEARCH ISTTUTE COLL RESEARCH ISTTUTE 気象研究所 メMA 素 案 作

• Analysis model - MOVE/MRI.COM-NP

- Domain: North Pacific (15°S-65°N, 100°E-75°W)
- Resolution: 10km (1/9° x 1/11°)
- In-situ TS profiles, satellite altimetry data, and SST objective analysis are assimilated through 4D-Var
- Sea Ice: A simplified filter

• Forecast model - MOVE/MRI.COM-JPN

- > Domain: Japan Area (20-52°N, 117-160°E)
- Resolution: 2km (1/50° x 1/33°)
- > Tide/SLP including
- Initialized with MOVE-NP through IAU downscaling
- > 30-day forecast for NP area
- 11-day forecast for Japan-area
- You can find the details in Hirose et al. (2019), Ocean Dynamics (DOI: 10.1007/s10236-019-01306-x)

★ The JMA regional system has been updated since Oct 2020

Sea-ice concentration

MOVE/MRI.COM-JPN has been used for **sea-ice prediction in the Sea of Okhotsk** since December 2021.

Ocean Products

Analysis & Forecast data

- SST, subsurface temperature
- Ocean currents
- Sea ice concentration(Okhotsk Sea)
- Tropical Cyclone Heat Potential (TCHP)

Forecast results

continued since Sep 2017

2018

2017

2019

2021

2020

25°N-

130°E

135°E

140°E

<u>Data Service</u>

Analysis & Forecast data

- NEAR-GOOS (only Analysis)
- Japan Meteorological Business Support Center

<u>Users</u>

Japanese citizens, organizations, researchers

- Fisheries Research Agency, Japan Coast Guard, etc.
- University of Tokyo, JAMSTEC, etc.

Development for future system update

♦ New 4D-Var scheme for assimilation of high-resolution satellite SST

- Daily SST increments are added to the control variables in the new 4D-Var scheme
- Test experiments with a North Pacific 4D-Var system
 - □ "NEW" experiment
 - Himawari/AHI SST as well as altimeter SLAs and in-situ TS profiles are assimilated with the NEW scheme
 - □ "OLD" experiment
 - Same obs data are assimilated with the original 4D-Var scheme
- New global ocean 4D-Var system with a resolution of 0.25° × 0.25°
- New weakly coupled DA system with the oceanic 4D-Var scheme

• digital twins

• JAMSTEC DIAS server

• AI/ML

- downscaling (e.g., from regional scale to harbor scale)
- surrogate modeling for time-consuming processes

Relationship and communalities with NWP groups

Concernent and the second seco

- Collaboration with NWP groups
 - Some pilot studies on the impact of ocean coupling
 - Typhoon prediction in the northwestern North Pacific
 - Heavy rainfall prediction around Japan

SST changes after typhoon passing $\ (^{\rm o}{\rm C})$

- observation (left)
- high-resolution CGCM result (middle)
- low-resolution CGCM result (right)

Kawakami et al. (2022) JGR-Oceans

OP-DCC interactions, best practice approaches

• **OP-DCC** interactions

- DCC-Atlas will become a good communication tool to connect ocean prediction systems over the world.
- Best practice approaches
 - We have much interest in a best practice for societal benefit of high-resolution regional system.

Sharing information and experience will make it possible to develop ocean operational system more efficiently!